设函数f(x)是定义域在(0,+∞)上的单调函数,对于任意正数x,y都有f(x,y)=f(x)+f(y),且f(2

设函数f(x)是定义域在(0,+∞)上的单调函数,对于任意正数x,y都有f(x,y)=f(x)+f(y),且f(2)=1.(1)求f(12)的值;(2)一个各项均为正数的... 设函数f(x)是定义域在(0,+∞)上的单调函数,对于任意正数x,y都有f(x,y)=f(x)+f(y),且f(2)=1.(1)求f(12)的值;(2)一个各项均为正数的数列{an}满足:f(Sn)=f(an)+f(an+1)-1(n∈N*),其中是Sn是数列{an}的前n项和,求数列{an}的通项公式. 展开
 我来答
手机用户43654
2014-08-28 · TA获得超过139个赞
知道答主
回答量:177
采纳率:33%
帮助的人:64.1万
展开全部
(1)令x=y=1,则f(1)=f(1)+f(1)=2f(1),∴f(1)=0
令x=2,y=
1
2
,则f(1)=f(2×
1
2
)=f(2)+f(
1
2

∵f(2)=1
f(
1
2
)
=-1
(2)∵f(Sn)=f(an)+f(an+1)-1=f[
1
2
an(an+1)]
∵函数f(x)是定义域在(0,+∞)上的单调函数,数列{an}各项为正数
∴Sn=
1
2
an(an+1)①
当n=1时,可得a1=1;
当n≥2时,Sn-1=
1
2
an-1(an-1+1)②
①-②可得an=
1
2
an(an+1)-=
1
2
an-1(an-1+1)
∴(an+an-1)(an-an-1-1)=0
∵an>0,∴an-an-1-1=0
即an-an-1=1
∴数列{an}为等差数列,a1=1,d=1;
∴an=1+(n-1)×1=n
即an=n
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式