已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α,且点B,A,D在一条直线上,连接BE
已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)...
已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按逆时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在旋转的过程中,若直线BE与CD相交于点P,试探究∠APB与∠MAN的关系,并说明理由.
展开
1个回答
展开全部
(1)证明:①∵∠BAC=∠DAE,
∴∠BAE=∠CAD,
∵AB=AC,AD=AE,
∴△ABE≌△ACD(SAS),
∴BE=CD.
②∵△ABE≌△ACD,
∴∠ABE=∠ACD,BE=CD,
∵M、N分别是BE,CD的中点,
∴BM=CN.
又∵AB=AC,
∴△ABM≌△ACN.
∴AM=AN,
即△AMN为等腰三角形.
(2)解:(1)中的两个结论仍然成立.
(3)证明:在图②中正确画出线段PD,
由(1)同理可证△ABM≌△ACN,
∴∠CAN=∠BAM,
∴∠BAC=∠MAN.
又∵∠BAC=∠DAE,
∴∠MAN=∠DAE=∠BAC.
∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.
∴△PBD和△AMN都为顶角相等的等腰三角形,
∴∠PBD=∠AMN,∠PDB=∠ANM,
∴△PBD∽△AMN.
∴∠APB=∠MAN.
∴∠BAE=∠CAD,
∵AB=AC,AD=AE,
∴△ABE≌△ACD(SAS),
∴BE=CD.
②∵△ABE≌△ACD,
∴∠ABE=∠ACD,BE=CD,
∵M、N分别是BE,CD的中点,
∴BM=CN.
又∵AB=AC,
∴△ABM≌△ACN.
∴AM=AN,
即△AMN为等腰三角形.
(2)解:(1)中的两个结论仍然成立.
(3)证明:在图②中正确画出线段PD,
由(1)同理可证△ABM≌△ACN,
∴∠CAN=∠BAM,
∴∠BAC=∠MAN.
又∵∠BAC=∠DAE,
∴∠MAN=∠DAE=∠BAC.
∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.
∴△PBD和△AMN都为顶角相等的等腰三角形,
∴∠PBD=∠AMN,∠PDB=∠ANM,
∴△PBD∽△AMN.
∴∠APB=∠MAN.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |