阅读理解题:已知:如图,△ABC中,AB=AC,P是底边BC上的任一点(不与B、C重合),CD⊥AB于D,PE⊥AB于E

阅读理解题:已知:如图,△ABC中,AB=AC,P是底边BC上的任一点(不与B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.求证:CD=PE+PF.在解答这... 阅读理解题:已知:如图,△ABC中,AB=AC,P是底边BC上的任一点(不与B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.求证:CD=PE+PF.在解答这个问题时,小明与小颖的思路方法分别如下:小明的思路方法是:过点P作PG⊥CD于G(如图1),则可证得四边形PEDG是矩形,也可证得△PCG≌△CPF,从而得到PE=DG,PF=CG,因此得CD=PE+PF.小颖的思路方法是:连接PA(如图2),则S△ABC=S△PAB+S△PAC,再由三角形的面积公式便可证得CD=PE+PF.由此得到结论:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.阅读上面的材料,然后解答下面的问题:(1)针对小明或小颖的思路方法,请选择俩人中的一种方法把证明过程补充完整(2)如图3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一点,EM⊥BD于M,EN⊥AC于N,试利用上述结论求EM+EN的值. 展开
 我来答
七日水凉年8514
2014-09-05 · 超过54用户采纳过TA的回答
知道答主
回答量:161
采纳率:0%
帮助的人:122万
展开全部
(1)证明:小明的思路方法:
过点P作PG⊥CD于G(如图1),
∵CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
∴四边形PEDG是矩形,
∴PE=DG
∵△ABC中,AB=AC,
∴△PCG≌△CPF,
∴PF=CG,
∴CD=PE+PF.

(2)设AC、BD交于O,
∵梯形ABCD中,AB=CD
∴梯形ABCD是等腰梯形
∴∠DCB=∠ABC=60°
∵AD∥BC
∴∠ADC=180-∠BCD=120°,∠ADB=∠DBC
∵AD=AB
∴∠ABD=∠ADB
∴∠DBC=∠ABD=∠ADB=30°
∴∠BDC=180°-∠BCD-∠DBC=90°
同理可得:∠ACB=30°
∴∠ACB=∠DBC
∴OB=OC
由结论可得:EM+EN=CD=2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式