(1-1/2+1/3-1/4...+1/49-1/50)/{1/(1+51)+1/(2+52)+1/(3+53)+1/(4+54)+...+1/(24+74)+1/(25+75) 5
1个回答
展开全部
分子=1-1/2+1/3-1/4......+1/49-1/50
=1-1/2+1/3-1/4......+1/49-1/50+(1/2+1/4+1/6+......+1/50)-(1/2+1/4+1/6+......+1/50)
=1+1/2+1/3+1/4......+1/49+1/50-2*(1/2+1/4+1/6+......+1/50)
=(1+1/2+1/3+1/4+1/25)+1/26......+1/49+1/50-(1+1/2+1/3+......+1/25)
=1/26+......+1/49+1/50
分母=(1/52+1/54+...1/100)=1/2(1/26+......+1/49+1/50)
∴原式=分子/分母=1/(1/2)=2
=1-1/2+1/3-1/4......+1/49-1/50+(1/2+1/4+1/6+......+1/50)-(1/2+1/4+1/6+......+1/50)
=1+1/2+1/3+1/4......+1/49+1/50-2*(1/2+1/4+1/6+......+1/50)
=(1+1/2+1/3+1/4+1/25)+1/26......+1/49+1/50-(1+1/2+1/3+......+1/25)
=1/26+......+1/49+1/50
分母=(1/52+1/54+...1/100)=1/2(1/26+......+1/49+1/50)
∴原式=分子/分母=1/(1/2)=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询