15题,求定积分,要过程谢谢。
展开全部
设x=sinθ∈(1/√2,1)
θ∈(π/4,π/2)
J=∫{π/4,π/2} cosθ/(sinθ)^2 d(sinθ)
=∫{π/4,π/2}1-1/(sinθ)^2 dθ
=π/4+1/tan(π/2)-1/tan(π/4)
=π/4-1
θ∈(π/4,π/2)
J=∫{π/4,π/2} cosθ/(sinθ)^2 d(sinθ)
=∫{π/4,π/2}1-1/(sinθ)^2 dθ
=π/4+1/tan(π/2)-1/tan(π/4)
=π/4-1
更多追问追答
追答
修正
设x=sinθ∈(1/√2,1)
θ∈(π/4,π/2)
J=∫{π/4,π/2} cosθ/(sinθ)^2 d(sinθ)
=∫{π/4,π/2}-1+1/(sinθ)^2 dθ
=-π/4-1/tan(π/2)+1/tan(π/4)
=1-π/4
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询