用定积分求X=acos^3t,y=asin^3t 所 围成的平面图形的面积 ∫ydx =4*∫a
用定积分求X=acos^3t,y=asin^3t所围成的平面图形的面积∫ydx=4*∫asin^3t(acos^3t)'dt,t:π/2→0=-3*a^2∫sin^4t*...
用定积分求X=acos^3t,y=asin^3t 所 围成的平面图形的面积
∫ydx
=4*∫asin^3t(acos^3t)'dt,t:π/2→0
=-3*a^2∫sin^4t*cos^2tdt
=-3a^2∫(sin^4t-sin^6t)dt
=3/8*πa
我想知道:为什么面积是∫ydx 展开
∫ydx
=4*∫asin^3t(acos^3t)'dt,t:π/2→0
=-3*a^2∫sin^4t*cos^2tdt
=-3a^2∫(sin^4t-sin^6t)dt
=3/8*πa
我想知道:为什么面积是∫ydx 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询