求lim x→(兀/2) (tanx/tan3x)
1个回答
展开全部
lim(x->π/2) (tanx/tan3x) (∞/∞)
=lim(x->π/2) (secx)^2/[ 3(sec3x)^2]
=lim(x->π/2) (cos3x)^2/[ 3(cosx)^2 ] (0/0)
=lim(x->π/2) -3sin6x/( -3sin2x)
=lim(x->π/2) sin6x/sin2x (0/0)
=lim(x->π/2) 6cos6x/(2cos2x)
=-6/(-2)
=3
=lim(x->π/2) (secx)^2/[ 3(sec3x)^2]
=lim(x->π/2) (cos3x)^2/[ 3(cosx)^2 ] (0/0)
=lim(x->π/2) -3sin6x/( -3sin2x)
=lim(x->π/2) sin6x/sin2x (0/0)
=lim(x->π/2) 6cos6x/(2cos2x)
=-6/(-2)
=3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询