影响PCB阻抗的三大因素是什么?
1、阻抗计算自动化
此软件包含各种阻抗模块,人员通过选择特定模块,输入线宽,线距,介层厚度,铜厚,Er值等相关数据,可以算出阻抗结果。一个PCB阻抗管控数目少则4,5组,多则几十组,每一组的管控线宽,介层厚度,铜厚等都不同,如果一个个去查数据,然后手动输入相关参数计算,非常费时且容易出错。
2、影响PCB拼版阻抗一致性最主要的因素是不同位置介厚均匀性,其次则是线宽均匀性;拼版不同位置残铜率差异会导致阻抗相差1~3 ohm,当图形分布均匀性较差时(残铜率差异较大),建议在不影响电气性能的基础上合理铺设阻流点和电镀分流点,以减小不同位置的介厚差异和镀铜厚度差异;
3、半固化片含胶量越低,层压后介厚均匀性越好,板边流胶量大会导致介厚偏小、介电常数偏大,从而造成近板边线路的阻抗值小于拼版中间区域;对于内层线路,拼版不同位置因线宽和铜厚导致的阻抗一致性差异较小;
对于外层线路,铜厚差异对阻抗的影响在2 ohm内,但铜厚差异引起的蚀刻线宽差异对阻抗一致性的影响较大,需提升外层镀铜均匀性能力。
扩展资料:
特点
PCB之所以能得到越来越广泛地应用,因为它有很多独特优点,概栝如下。
可高密度化。数十年来,印制板高密度能够随着集成电路集成度提高和安装技术进步而发展着。
高可靠性。通过一系列检查、测试和老化试验等可保证PCB长期(使用期,一般为20年)而可靠地工作着。
可设计性。对PCB各种性能(电气、物理、化学、机械等)要求,可以通过设计标准化、规范化等来实现印制板设计,时间短、效率高。
可生产性。采用现代化管理,可进行标准化、规模(量)化、自动化等生产、保证产品质量一致性。
可测试性。建立了比较完整测试方法、测试标准、各种测试设备与仪器等来检测并鉴定PCB产品合格性和使用寿命。
可组装性。PCB产品既便于各种元件进行标准化组装,又可以进行自动化、规模化批量生产。同时,PCB和各种元件组装部件还可组装形成更大部件、系统,直至整机。
可维护性。由于PCB产品和各种元件组装部件是以标准化设计与规模化生产,因而,这些部件也是标准化。
参考资料来源:百度百科-PCB
1 表面微带线及特性阻抗
表面微带线的特性阻抗值较高并在实际中广泛采用,它的外层为控制阻抗的信号线面,它和与之相邻的基准面之间用绝缘材料隔开。
特性阻抗的计算公式为:
Z0=87/SQRT(εr+1.41)×ln[(5.98h)/(0.8w+t)] (1)
Z0:印刷导线的特性阻抗:
εr:绝缘材料的介电常数:
h:印刷导线与基准面之间的介质厚度:
w:印刷导线的宽度:
t:印刷导线的厚度。
从公式(1)可以看出,影响特性阻抗的主要因素是:(1)介质常数εr;(2)介质厚度h;(3)导线宽度w;(4)导线厚度t等。因而可知,特性阻抗与基板材料(覆铜板材)关系是非常密切的,故选择基板材料在PCB设计中非常重要。
2 材料的介电常数及其影响
材料的介电常数是材料的生产厂家在频率为1 MHz下测量确定的。不同生产厂家生产的同种材料由于其树脂含量不同而不同。本研究以环氧玻璃布为例.研究了介电常数与频率变化的关系。
介电常数是随着频率的增加而减小,所以在实际应用中应根据工作频率确定材料的介电常数,一般选用平均值即可满足要求。信号在介质材料中传输速度将随着介质常数增加而减小。因此要获得高的信号传输速度必须降低材料的介质常数。同时要获得高的传输速度就必须采用高的特性阻值,而高的特性阻抗必须选用低的介质常数材料。
3 导线宽度及厚度的影响
导线宽度是影响特性阻抗变化的主要参数之一。
当导线宽度改变0.025mm时.就会引起阻抗值相应的变化5~6Ω。而在实际生产中如果控制阻抗的信号线面使用18um铜箔,可允许的导线宽度变化公差为±0.015mm。如果控制阻抗的变化公差为35um铜箔,可允许的导线宽度变化公差为±0.003 mm。由此可见.生产中所允许的导线宽度变化会导致阻抗值发生很大的改变。导线的宽度是设计者根据多种设计要求确定的.它既要满足导线载流量和温升的要求.又要得到所期望的阻抗值。这就要求生产者在生产中应该保证线宽符合设计要求,并使其变化在公差范围内.以适应阻抗的要求。
导线厚度也是根据导体所要求的载流量以及允许的温升确定的。在生产中为了满足使用要求.镀层厚度一般平均为25um。导线厚度等于铜箔厚度加上镀层厚度。需要注意的是电镀前一度要保证导线表面清洁,不应粘有残余物和修板油黑,而导致电镀时铜没有镀上.使局部导线厚度发生变化.影响特性阻抗值。另外,在刷板过程中,一定要小心操作,不要因此而改变了导线厚度,导致阻抗值发生变化。
4 介质厚度(h)的影响
从公式(1)中可看出,特性阻抗Z0是与介质厚度的自然对数成正比的,因而可知介质厚度越厚,其Z0越大.所以介质厚度是影响特性阻值的另一个主要因素。因为导线宽度和材料的介电常数在生产前就已经确定.导线厚度工艺要求也可作为一个定值.所以控制层压厚度(介质厚度)是生产中控制特性阻抗的主要手段。特性阻抗值与介质厚度变化之间的关系。当介质厚度改变0.025mm时.就会引起阻抗值相应的变化+5~8Ω。而在实际生产过程中.所允许的每层层压厚度变化将导致阻抗值发生很大的改变。在实际生产中是选用不同型号的半固化片作为绝缘介质.根据半固化片的数量确定绝缘介质的厚度。以表面微带线为例,确定相应工作频率下绝缘材料的介电常数,然后利用公式计算出相应的Z0,再根据用户提出的导线宽度值和计算值Z0,查出相对应的介质厚度,然后根据所选用的覆铜板和铜箔的厚度确定半固化片的型号和张数。
微带线结构的设计比起带状线设计时,在相同介质厚度和材料下,具有较高的特性阻抗值.一般要大20~40Ω。因此.对高频和高速数字信号传输大多采用微带线结构的设计。同时.特性阻抗值将随着介质厚度的增加而增大。所以.对于特性阻抗值严格控制的高频线路来说.对覆铜板的介质厚度的误差应提出严格要求,一般来说,其介质厚度变化不超过10%。对于多层板来说.介质厚度还是个加工因素.特别是与多层层压加工密切相关.因此.也应严密加以控制。
5 结论
在实际生产中,导线的宽度、厚度、绝缘材料的介电常数和绝缘介质厚度的稍微改变都会引起特性阻抗值发生变化.另外特性阻抗值还会与其它生产因素有关,所以,为了实现对特性阻抗的控制,生产者必须了解影响特性阻抗值变化的因素,掌握实际生产条件,根据设计者提出的要求,调整各个工艺参数,使其变化在所允许的公差范围内,以得到期望的阻抗值。
1 表面微带线及特性阻抗
表面微带线的特性阻抗值较高并在实际中广泛采用,它的外层为控制阻抗的信号线面,它和与之相邻的基准面之间用绝缘材料隔开。
特性阻抗的计算公式为:
Z0=87/SQRT(εr+1.41)×ln[(5.98h)/(0.8w+t)] (1)
Z0:印刷导线的特性阻抗:
εr:绝缘材料的介电常数:
h:印刷导线与基准面之间的介质厚度:
w:印刷导线的宽度:
t:印刷导线的厚度。
从公式(1)可以看出,影响特性阻抗的主要因素是:(1)介质常数εr;(2)介质厚度h;(3)导线宽度w;(4)导线厚度t等。因而可知,特性阻抗与基板材料(覆铜板材)关系是非常密切的,故选择基板材料在PCB设计中非常重要。
2 材料的介电常数及其影响
材料的介电常数是材料的生产厂家在频率为1 MHz下测量确定的。不同生产厂家生产的同种材料由于其树脂含量不同而不同。本研究以环氧玻璃布为例.研究了介电常数与频率变化的关系。
介电常数是随着频率的增加而减小,所以在实际应用中应根据工作频率确定材料的介电常数,一般选用平均值即可满足要求。信号在介质材料中传输速度将随着介质常数增加而减小。因此要获得高的信号传输速度必须降低材料的介质常数。同时要获得高的传输速度就必须采用高的特性阻值,而高的特性阻抗必须选用低的介质常数材料。
3 导线宽度及厚度的影响
导线宽度是影响特性阻抗变化的主要参数之一。
当导线宽度改变0.025mm时.就会引起阻抗值相应的变化5~6Ω。而在实际生产中如果控制阻抗的信号线面使用18um铜箔,可允许的导线宽度变化公差为±0.015mm。如果控制阻抗的变化公差为35um铜箔,可允许的导线宽度变化公差为±0.003 mm。由此可见.生产中所允许的导线宽度变化会导致阻抗值发生很大的改变。导线的宽度是设计者根据多种设计要求确定的.它既要满足导线载流量和温升的要求.又要得到所期望的阻抗值。这就要求生产者在生产中应该保证线宽符合设计要求,并使其变化在公差范围内.以适应阻抗的要求。
导线厚度也是根据导体所要求的载流量以及允许的温升确定的。在生产中为了满足使用要求.镀层厚度一般平均为25um。导线厚度等于铜箔厚度加上镀层厚度。需要注意的是电镀前一度要保证导线表面清洁,不应粘有残余物和修板油黑,而导致电镀时铜没有镀上.使局部导线厚度发生变化.影响特性阻抗值。另外,在刷板过程中,一定要小心操作,不要因此而改变了导线厚度,导致阻抗值发生变化。
4 介质厚度(h)的影响
从公式(1)中可看出,特性阻抗Z0是与介质厚度的自然对数成正比的,因而可知介质厚度越厚,其Z0越大.所以介质厚度是影响特性阻值的另一个主要因素。因为导线宽度和材料的介电常数在生产前就已经确定.导线厚度工艺要求也可作为一个定值.所以控制层压厚度(介质厚度)是生产中控制特性阻抗的主要手段。特性阻抗值与介质厚度变化之间的关系。当介质厚度改变0.025mm时.就会引起阻抗值相应的变化+5~8Ω。而在实际生产过程中.所允许的每层层压厚度变化将导致阻抗值发生很大的改变。在实际生产中是选用不同型号的半固化片作为绝缘介质.根据半固化片的数量确定绝缘介质的厚度。以表面微带线为例,确定相应工作频率下绝缘材料的介电常数,然后利用公式计算出相应的Z0,再根据用户提出的导线宽度值和计算值Z0,查出相对应的介质厚度,然后根据所选用的覆铜板和铜箔的厚度确定半固化片的型号和张数。
微带线结构的设计比起带状线设计时,在相同介质厚度和材料下,具有较高的特性阻抗值.一般要大20~40Ω。因此.对高频和高速数字信号传输大多采用微带线结构的设计。同时.特性阻抗值将随着介质厚度的增加而增大。所以.对于特性阻抗值严格控制的高频线路来说.对覆铜板的介质厚度的误差应提出严格要求,一般来说,其介质厚度变化不超过10%。对于多层板来说.介质厚度还是个加工因素.特别是与多层层压加工密切相关.因此.也应严密加以控制。
5 结论
在实际生产中,导线的宽度、厚度、绝缘材料的介电常数和绝缘介质厚度的稍微改变都会引起特性阻抗值发生变化.另外特性阻抗值还会与其它生产因素有关,所以,为了实现对特性阻抗的控制,生产者必须了解影响特性阻抗值变化的因素,掌握实际生产条件,根据设计者提出的要求,调整各个工艺参数,使其变化在所允许的公差范围内,以得到期望的阻抗值。
2024-11-22 · 百度认证:深圳市宏联电路有限公司官方账号
1. 介质厚度 (H)
定义:介质厚度是指印刷导线与基准面之间的绝缘材料的厚度。
影响:介质厚度与特性阻抗成正比。介质厚度增加,特性阻抗值增大;介质厚度减小,特性阻抗值减小。
2. 导线宽度 (W)
定义:导线宽度是指印刷导线的宽度。
影响:导线宽度与特性阻抗成反比。导线宽度增加,特性阻抗值减小;导线宽度减小,特性阻抗值增大。
3. 介电常数 (Er)
定义:介电常数是绝缘材料的电学性质参数,表示材料在电场中的极化程度。
影响:介电常数与特性阻抗成反比。介电常数增加,特性阻抗值减小;介电常数减小,特性阻抗值增大。
具体关系总结
介质厚度 (H):介质厚度增加,阻抗增大;介质厚度减小,阻抗减小。
导线宽度 (W):导线宽度增加,阻抗减小;导线宽度减小,阻抗增大。
介电常数 (Er):介电常数增加,阻抗减小;介电常数减小,阻抗增大。
这些因素在PCB设计中非常重要,特别是在高速电路板或关键信号线的设计中,需要精确控制这些参数以确保信号的完整性和传输效率。