求齐次线性方程组的基础解系和与通解

 我来答
5438ABd
2019-07-17 · TA获得超过1万个赞
知道答主
回答量:1.1万
采纳率:10%
帮助的人:294万
展开全部

x4=k的话

x3当然是4k/3

通常在化简到

1 0 -1 0

0 1 0 3

0 0 3 -4

再r3/3,r1+r3,得到

1 0 0 -4/3

0 1 0 3

0 0 1 -4/3

这样直接得到解系为

(4/3,-3,4/3,1)^T

扩展资料:

求解步骤

1、对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵;

2、若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束;

若r(A)=r<n(未知量的个数),则原方程组有非零解,进行以下步骤:

3、继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;

4、选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解。

性质:

1.齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。

2.齐次线性方程组的解的k倍仍然是齐次线性方程组的解。

3.齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解。

齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解。

4. n元齐次线性方程组有非零解的充要条件是其系数行列式为零。等价地,方程组有唯一的零解的充要条件是系数矩阵不为零。(克莱姆法则)

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
sjh5551
高粉答主

2018-01-27 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8120万
展开全部
系数矩阵 A =
[1 -8 10 2]
[2 4 5 1]
[3 8 6 -2]
初等行变换为
[1 -8 10 2]
[0 20 -15 -3]
[0 32 -24 -8]
初等行变换为
[1 -8 10 2]
[0 20 -15 -3]
[0 4 -3 -1]
初等行变换为
[1 0 4 0]
[0 4 -3 -1]
[0 0 0 2]
初等行变换为
[1 0 4 0]
[0 4 -3 0]
[0 0 0 1]
方程化为
x1 = -4x3
4x2 = 3x3
x4 = 0,
取 x3 = 4, 得基础解系 (-16, 3, 4, 0)^T
则通解 x = k(-16, 3, 4, 0)^T
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式