求 x*arccosx/(1-x^2)^3/2 dx的不定积分
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
1个回答
展开全部
分部积分:
∫x^2*arccosxdx=1/3∫arccosxdx^3=1/3*x^3arccosx-1/3∫x^3darccosx
=1/3*x^3arccosx+1/3∫x^3/√(1-x^2)dx=1/3*x^3arccosx+1/6∫x^2/√(1-x^2)dx^2
=1/3*x^3arccosx+1/6∫{(x^2-1)/√(1-x^2)+1/√(1-x^2)}dx^2
=1/3*x^3arccosx+1/9(1-x^2)^(3/2)-1/3(1-x^2)^(1/2)+C
∫x^2*arccosxdx=1/3∫arccosxdx^3=1/3*x^3arccosx-1/3∫x^3darccosx
=1/3*x^3arccosx+1/3∫x^3/√(1-x^2)dx=1/3*x^3arccosx+1/6∫x^2/√(1-x^2)dx^2
=1/3*x^3arccosx+1/6∫{(x^2-1)/√(1-x^2)+1/√(1-x^2)}dx^2
=1/3*x^3arccosx+1/9(1-x^2)^(3/2)-1/3(1-x^2)^(1/2)+C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询