为什么x从负无穷到正无穷的积分发散 5

按照高数课本的定理,拆分成两个单侧无穷积分,因为一侧发散,所以整体发散。但从定积分的几何意义来看,这个积分值为0,这个如何理解呢?... 按照高数课本的定理,拆分成两个单侧无穷积分,因为一侧发散,所以整体发散。但从定积分的几何意义来看,这个积分值为0,这个如何理解呢? 展开
 我来答
五百学长
高能答主

2021-08-02 · 最想被夸「你懂的真多」
知道小有建树答主
回答量:3972
采纳率:100%
帮助的人:66.7万
展开全部

从结果看,积分值是0,从过程看,x从负无穷到正无穷一直是发散的。

从几何意义来讲积分值也不为0,你有一个最基本的概念没有搞清楚,说得简单一点就是一个正无穷大的数加上一个负无穷大的数最后结果不一定为0,这道题最简单的方法就是用反常积分的判别法来证明α=-1≤1,所以该积分发散。

简介:

积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。

比如一个长方体状的游泳池的容积可以用长 × 宽 × 高求出。但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。

522254393
2019-10-14 · TA获得超过157个赞
知道答主
回答量:39
采纳率:0%
帮助的人:15.3万
展开全部
从几何意义来讲积分值也不为0,你有一个最基本的概念没有搞清楚,说得简单一点就是一个正无穷大的数加上一个负无穷大的数最后结果不一定为0. 这道题最简单的方法就是用反常积分的判别法来证明α=-1≤1,所以该积分发散。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
电脑玩家house
2019-08-15
知道答主
回答量:5
采纳率:0%
帮助的人:1248
展开全部
从结果看,积分值是0,从过程看,x从负无穷到正无穷一直是发散的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
arongustc
科技发烧友

2019-08-11 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:2.3万
采纳率:66%
帮助的人:5964万
展开全部
举个例子?
追问
就是x从负无穷到正无穷的反常积分啊
追答
我是说你得找个你认为不合理的反常积分,普通反常积分没有你说的问题,如果一侧发散,积分是不收敛的
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式