
三阶向量不为零为什么其秩等于向量个数?
1个回答
展开全部
对于n个n维向量,如果向量组的秩等于向量组个数,那么向量组就是满秩的,其行列式不等于0。即每个向量都不能由别的向量线性表示,向量组就是线性无关的。
一个向量组的极大线性无关组所包含的向量的个数,称为向量组的秩;若向量组的向量都是0向量,则规定其秩为0。向量组α1,α2,···,αs的秩记为R{α1,α2,···,αs}或rank{α1,α2,···,αs}。
一个m行n列的矩阵可以看做是m个行向量构成的行向量组,也可看做n个列向量构成的列向量组。行向量组的秩成为行秩,列向量组的秩成为列秩,容易证明行秩等于列秩,所以就可成为矩阵的秩。
一个向量组的极大线性无关组所包含的向量的个数,称为向量组的秩;若向量组的向量都是0向量,则规定其秩为0。向量组α1,α2,···,αs的秩记为R{α1,α2,···,αs}或rank{α1,α2,···,αs}。
一个m行n列的矩阵可以看做是m个行向量构成的行向量组,也可看做n个列向量构成的列向量组。行向量组的秩成为行秩,列向量组的秩成为列秩,容易证明行秩等于列秩,所以就可成为矩阵的秩。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询