2个回答
展开全部
用代入消元法的一般步骤是: 1.选一个系数比较简单的方程进行变形,变成 y = ax +b 或 x = ay + b的形式; 2.将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程; 3.解这个一元一次方程,求出 x 或 y 值; 4.将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数; 5.把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。例:解方程组 : x+y=5① 6x+13y=89② 解:由①得x=5-y③ 把③代入②,得6(5-y)+13y=89 得 y=59/7 把y=59/7代入③,得x=5-59/7 得x=-24/7 ∴ x=-24/7,y=59/7 为方程组的解。 扩展资料:用加减法解二元一次方程组的一般步骤:第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数。第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.。第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑。注意:(1)当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便。(2)如果所给方程组或所列方程组较为复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好。
追问
请告诉过程和答案
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询