2个回答
展开全部
微分方程的特征方程 r^2 + 1 = 0, r = ±i, 非齐次项是 cosx, 则
微分方程的特解应设为 y = x(acosx + bsinx) = axcosx+bxsinx
y' = acosx-axsinx+ bsinx+bxcosx = (a+bx)cosx+(-ax+b)sinx
y'' = bcosx-(a+bx)sinx-asinx+(-ax+b)cosx = (-ax+2b)cosx-(2a+bx)sinx
代入微分方程得
(-ax+2b)cosx-(2a+bx)sinx + axcosx+bxsinx = cosx
2b = 1, -2a = 0, 得 b = (1/2) , a = 0, 特解是 y = (1/2)xsinx
微分方程的特解应设为 y = x(acosx + bsinx) = axcosx+bxsinx
y' = acosx-axsinx+ bsinx+bxcosx = (a+bx)cosx+(-ax+b)sinx
y'' = bcosx-(a+bx)sinx-asinx+(-ax+b)cosx = (-ax+2b)cosx-(2a+bx)sinx
代入微分方程得
(-ax+2b)cosx-(2a+bx)sinx + axcosx+bxsinx = cosx
2b = 1, -2a = 0, 得 b = (1/2) , a = 0, 特解是 y = (1/2)xsinx
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |