(2013?潮州二模)如图所示,已知AB为圆O的直径,点D为线段AB上一点,且AD=13DB,点C为圆O上一点,且BC=3

 我来答
买骏喆奕晗
2019-10-11 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:27%
帮助的人:821万
展开全部
解答:解析:(1)连接OC,由AD=
1
3
BD知,点D为AO的中点,
又∵AB为圆的直径,∴AC⊥BC,

3
AC=BC,∴∠CAB=60°,
∴△ACO为等边三角形,∴CD⊥AO.
∵点P在圆O所在平面上的正投影为点D,
∴PD⊥平面ABC,又CD?平面ABC,
∴PD⊥CD,PD∩AO=D,
∴CD⊥平面PAB,PA?平面PAB,
∴PA⊥CD.
(2)过点D作DE⊥PB,垂足为E,连接CE,
由(1)知CD⊥平面PAB,又PB?平面PAB,
∴CD⊥PB,又DE∩CD=D,
∴PB⊥平面CDE,又CE?平面CDE,
∴CE⊥PB,
∴∠DEC为二面角C-PB-A的平面角.
由(1)可知CD=
3
,PD=BD=3,
∴PB=3
2
,则DE=
PD×BD
PB
=
3
2
2

∴在Rt△CDE中,tan∠DEC=
CD
DE
=
6
3

∴cos∠DEC=
15
5
,即二面角C-PB-A的余弦值为
15
5
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式