![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
已知数列{an}的前n项和为Sn,点(n,Sn/n)在直线y=1/2x+11/2上,数列{bn}满足
展开全部
(1)由点(n,Sn/n)在直线y=1/2x+11/2上得:
Sn/n=1/2n+11/2即:2Sn=n^2+11n因此:2Sn-1=(n-1)^2+11(n-1)
两式相减得:2[Sn-(Sn-1)]=2an=n^2+11n-[(n-1)^2+11(n-1)]
整理得:an=n+5
又:b(n+2)-2b(n+1)+bn=0,(n∈N*)
则:b(n+2)-b(n+1)=b(n+1)-bn那么bn为一个等差数列。
设bn=c×n+d
则:b3=3c+d=11
S9=(b1+b9)*9/2=(c+d+9c+d)*9/2=153
解得:
c=3d=2
所以bn=3n+2
(2)cn=3/(2an-11)(2bn-1)=3/(2n+10-11)(2*(3n+2)-1)=3/(2n-1)(6n+3)
=1/(2n-1)(2n+1)=1/2×[1/(2n-1)-1/(2n+1)]
所以Tn=c1+c2+...+cn
=1/2*[1/1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)]
=1/2*[1/1-1/(2n+1)]
=n/(2n+1)
令Tn=n/(2n+1)>k/57
要使得对一切n∈N*都成立,那么必然不等号右边的数小于等于左边的最小值即可。
而对一切n∈N*
Tn=n/(2n+1)=1/2*[1-1/(2n+1)]>=T1=1/3
所以令k/57<1/3k<19
所以最大正整数k=18(注意k=19时不符合)
Sn/n=1/2n+11/2即:2Sn=n^2+11n因此:2Sn-1=(n-1)^2+11(n-1)
两式相减得:2[Sn-(Sn-1)]=2an=n^2+11n-[(n-1)^2+11(n-1)]
整理得:an=n+5
又:b(n+2)-2b(n+1)+bn=0,(n∈N*)
则:b(n+2)-b(n+1)=b(n+1)-bn那么bn为一个等差数列。
设bn=c×n+d
则:b3=3c+d=11
S9=(b1+b9)*9/2=(c+d+9c+d)*9/2=153
解得:
c=3d=2
所以bn=3n+2
(2)cn=3/(2an-11)(2bn-1)=3/(2n+10-11)(2*(3n+2)-1)=3/(2n-1)(6n+3)
=1/(2n-1)(2n+1)=1/2×[1/(2n-1)-1/(2n+1)]
所以Tn=c1+c2+...+cn
=1/2*[1/1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)]
=1/2*[1/1-1/(2n+1)]
=n/(2n+1)
令Tn=n/(2n+1)>k/57
要使得对一切n∈N*都成立,那么必然不等号右边的数小于等于左边的最小值即可。
而对一切n∈N*
Tn=n/(2n+1)=1/2*[1-1/(2n+1)]>=T1=1/3
所以令k/57<1/3k<19
所以最大正整数k=18(注意k=19时不符合)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询