如图,在等腰rt△abc中,角acb=90度,cd为斜边ab上的高

如图,在等腰三角形Rt△ABC中,∠ACB=90°,D是斜边AB上任意一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH... 如图,在等腰三角形Rt△ABC中,∠ACB=90°,D是斜边AB上任意一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH 展开
 我来答
厍玟荤韶容
2020-02-13 · TA获得超过1201个赞
知道小有建树答主
回答量:1814
采纳率:100%
帮助的人:8.6万
展开全部
证明:
∵AE⊥CD于E
∴∠EAC+∠ECA=90°=∠ECA+∠FCB
∴∠EAC=∠FCB
∵∠BFC=∠CEA=90°,AC=BC
∴△AEC≌△CFB
∴AE=AF
∴EC=FB
又∵∠BDF=∠CDH,∠CDH+∠DCG=∠DCG+∠CGE=90°
∴∠CGE=∠BDF
∴△CGE≌△BDF
∴BD=CG
(图)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式