两矩阵相似可以得出什么结论?

 我来答
热爱社会的飞飞
高能答主

2021-12-30 · 衣食以厚民生,礼义以养其心。
热爱社会的飞飞
采纳数:530 获赞数:51594

向TA提问 私信TA
展开全部

结论如下:

特征值是相同的,行列式也是一样的,相似就合同,两个矩阵主对角线的和是一样的。如果矩阵相似,那么其代表的就是不同坐标系(基)的同一个线性变换

也就是AP=PB,其中AP是由于在自然的笛卡尔坐标系下表示的,所以前面有一个E没有写出来。也就是应该是EAP=PB,也就是EA是在笛卡尔坐标系下的坐标,P是过渡矩阵。



矩阵特征向量的几何含义

矩阵乘以一个向量的结果仍是同维数的一个向量。因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量。

比如可以取适当的二维方阵,使得这个变换的效果就是将平面上的二维变量逆时针旋转30度。这时除了零向量,没有其他向量可以在平面上旋转30度而不改变方向的,所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能是零向量)。

综上所述,一个变换(或者说矩阵)的特征向量就是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式