求函数f(x)=2x³+3x²-12x+1,在x∈[-1,3]区间内的最大值和最小值
1个回答
展开全部
∵f(x)=2x³+3x²-12x+1
∴f'(x)=6x²+6x-12=6(x²+x-2)=6(x+2)(x-1)
令f'(x)=0,得x=1或x=-2(舍去)
∴当x∈[-1,1)时,f'(x)<0,f(x)单调递减;
当x∈(1,3]时,f'(x)>0,f(x)单调递增.
∴当x=1时,函数f(x)取得极小值,也是最小值f(1)=-6
又f(-1)=14,f(3)=46
∴函数f(x)=2x³+3x²-12x+1在x∈[-1,3]上的最大值为46,最小值为-6.
∴f'(x)=6x²+6x-12=6(x²+x-2)=6(x+2)(x-1)
令f'(x)=0,得x=1或x=-2(舍去)
∴当x∈[-1,1)时,f'(x)<0,f(x)单调递减;
当x∈(1,3]时,f'(x)>0,f(x)单调递增.
∴当x=1时,函数f(x)取得极小值,也是最小值f(1)=-6
又f(-1)=14,f(3)=46
∴函数f(x)=2x³+3x²-12x+1在x∈[-1,3]上的最大值为46,最小值为-6.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |