反比例函数的概念
反比例函数的概念如下:
反比例函数的图像属于以原点为对称中心的中心对称的两条曲线,反比例函数图象中每一象限的每一条曲线会无限接近x轴y轴但不会与坐标轴相交(y≠0)。
一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。因为y=k/x是一个分式,所以自变量x的取值范围是x≠0。而y=k/x有时也被写成xy=k或y=k·x^(-1)。表达式为:x是自变量,y是因变量,y是x的函数。
一般的,如果两个变量x,y之间的关系可以表示成(k为常数,k≠0,x≠0) ,其中k叫做反比例系数,x是自变量,y是x的函数,x的取值范围是不等于0的一切实数。
且y也不能等于0。k>0时,图象在一、三象限。k<0时,图象在二、四象限。k的绝对值表示的是x与y的坐标形成的矩形的面积。
表达式
x是自变量,y是因变量,y是x的函数。
(即:y=kx^-1)
(k为常数且k≠0,x≠0)
若此时比例系数为:
自变量的取值范围
①在一般的情况下,自变量x的取值范围可以是不等于0的任意实数。
②函数y的取值范围也是任意非零实数。
解析式
其中x是自变量,y是x的函数,其定义域是不等于0的一切实数,
即{x|x≠0,x属于R这个范围。R是实数范围。也就是x是实数}。
下面是一些常见的形式:y*x=-1,y=x^(-1)*k(k为常数(k≠0),x不等于0)。
因为在反比例函数的解析式y=k/x(k≠0)中,只有一个待定系数k,确定了k的值,也就确定了反比例函数的解析式。因而一般只要给出一组x或者y的值或图像上任意一点的坐标,然后代入y=k/x中即可求出k的值,进而确定反比例函数的解析式。