dy=f'(x)dx什么意思?
1个回答
展开全部
dy=f(x)dx
微分和积分的区别
微分就是在某点处用切线的直线方程近似曲线方程的取值,不指定某点就是所有点满足的关系式;积分分为定积分和不定积分,定积分就是求曲线与x轴所夹的面积;不定积分就是该面积满足的方程式。
区别
数学表达不同
微分:导数和微分在书写的形式有些区别,如y'=f(x),则为导数,书写成dy=f(x)dx,则为微分。
积分:设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数),叫做函数f(x)的不定积分,数学表达式为:若f'(x)=g(x),则有∫g(x)dx=f(x)+c。
几何意义不同
微分:设Δx是曲线y=f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。几何意义是将线段无线缩小来近似代替曲线段。
积分:实际操作中可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。
微分
微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。
积分
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。
微分和积分的区别
微分就是在某点处用切线的直线方程近似曲线方程的取值,不指定某点就是所有点满足的关系式;积分分为定积分和不定积分,定积分就是求曲线与x轴所夹的面积;不定积分就是该面积满足的方程式。
区别
数学表达不同
微分:导数和微分在书写的形式有些区别,如y'=f(x),则为导数,书写成dy=f(x)dx,则为微分。
积分:设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数),叫做函数f(x)的不定积分,数学表达式为:若f'(x)=g(x),则有∫g(x)dx=f(x)+c。
几何意义不同
微分:设Δx是曲线y=f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。几何意义是将线段无线缩小来近似代替曲线段。
积分:实际操作中可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。
微分
微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。
积分
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
杭州彩谱科技有限公司
2020-07-03 广告
2020-07-03 广告
测色仪L、a、b、c、h的意思,L代表明暗度(黑白),a代表红绿色,b代表黄蓝色,c表示彩度(色彩饱和的程度或纯粹度),h表示色调角。测色仪,广泛应用于塑胶、印刷、油漆油墨、纺织、印染服装等行业的颜色管理领域,根据CIE色空间的Lab,Lc...
点击进入详情页
本回答由杭州彩谱科技有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询