球坐标怎么求变换公式是什么?
1个回答
展开全部
球坐标变换公式是:
球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:
x=rsinθcosφ。
y=rsinθsinφ。
z=rcosθ。
反之,直角坐标系(x,y,z)与球坐标系(r,θ,φ)的转换关系为:
r= sqrt(x*2 + y*2 + z*2)。
φ= arctan(y/x)。
θ= arccos(z/r)。
原理:
地理坐标系用两个角值,纬度与经度,来表示地球表面的地点。正如二维直角坐标系专精在平面上,二维球坐标系可以很简易的设定圆球表面上的点的位置。在这里,我们认定这圆球是个单位圆球;其半径是1。通常我们可以忽略这圆球的半径。在解析旋转矩阵问题上,这方法是非常有用的。
用来描述与分析拥有球状对称性质的物理问题,最自然的坐标系,莫非是球坐标系。例如,一个具有质量或电荷的圆球形位势场。两种重要的偏微分方程式,拉普拉斯方程与亥姆霍兹方程,在球坐标里,都可以成功的使用分离变数法求得解答。
这种方程式在角部分的解答,皆呈球谐函数的形式。球坐标的概念,延伸至高维空间,则称为超球坐标(n-sphere)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询