如图,将△aob置于平面直角坐标系中,o为原点 ∠abo=60°,若△aob的外接圆与y轴交于点d(0.3)
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值)
1个回答
展开全部
解:(1)、分别作线段AB、OA、OB的垂直平分线,三线的交点即为△AOB的外接圆圆心P。
连接PO、PA 作PE⊥OA交OA于点E
∵∠ABO=60°∴∠APO=120°
∵PE⊥OA OA=3∴OE=1.5 ∠EPO=60°
∵tan60°=OE/PE=√3 ∴PE=√3/2
∴P点的坐标为(1.5,√3/2)
(2)、连接PD则PD=PO
∵∠POE=30°∴∠POD=60°,
∴△DOP为等边三角形,即:PD=PO=OD
∵OE²+PE²=PO²∴PO=√1.5²+(√3/2)²=√3
∴OD=√3
∴D点的坐标为(0,√3)
(3)设直线CD的函数解析式为:y=kx+b
∵CD是⊙P的切线∴PD⊥CD ∴∠CDO=30°
∵tan30°=CO/DO=√3 /3∴CO=√3×√3/3=1
∴C点的坐标为(-1,0)
把(-1,0)、(0,√3)代入y=kx+b中,解得:k= √3 b=√3
∴直线CD的函数解析式为:y=√3x+√3
连接PO、PA 作PE⊥OA交OA于点E
∵∠ABO=60°∴∠APO=120°
∵PE⊥OA OA=3∴OE=1.5 ∠EPO=60°
∵tan60°=OE/PE=√3 ∴PE=√3/2
∴P点的坐标为(1.5,√3/2)
(2)、连接PD则PD=PO
∵∠POE=30°∴∠POD=60°,
∴△DOP为等边三角形,即:PD=PO=OD
∵OE²+PE²=PO²∴PO=√1.5²+(√3/2)²=√3
∴OD=√3
∴D点的坐标为(0,√3)
(3)设直线CD的函数解析式为:y=kx+b
∵CD是⊙P的切线∴PD⊥CD ∴∠CDO=30°
∵tan30°=CO/DO=√3 /3∴CO=√3×√3/3=1
∴C点的坐标为(-1,0)
把(-1,0)、(0,√3)代入y=kx+b中,解得:k= √3 b=√3
∴直线CD的函数解析式为:y=√3x+√3
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询