设函数y=f(x)是定义在R+上的函数,并且满足下面三个条件:①对任意正数x,y 都有f(xy)=f(x)+f(y)

设函数y=f(x)是定义在R+上的函数,并且满足下面三个条件:①对任意正数x,y都有f(xy)=f(x)+f(y);②当x>1时,f(x)<0;③f(3)=-1.(1)求... 设函数y=f(x)是定义在R+上的函数,并且满足下面三个条件:①对任意正数x,y 都有f(xy)=f(x)+f(y);②当x>1时,f(x)<0;③f(3)=-1.(1)求f(1),f(19)的值;(2)证明:f(x)在R+上是减函数;(3)如果不等式分f(x)+f(2-x)<2成立,求x的取值范围. 展开
 我来答
无间TXC
推荐于2016-04-13 · TA获得超过346个赞
知道答主
回答量:135
采纳率:100%
帮助的人:60.3万
展开全部
(1)令x=y=1得f(1)=f(1)+f(1),则f(1)=0,
而f(9)=f(3)+f(3)=-1-1=-2,
且f(9)+f(
1
9
)=f(1)=0,则f(
1
9
)=2;
(2)取定义域中的任意的x1,x2,且0<x1<x2
f(x2)-f(x1)=f(x1?
x2
x1
)-f(x1)=f(x1)+f(
x2
x1
)-f(x1)=f(
x2
x1
)<0
∴f(x)在R+上为减函数.
(3)由条件①及(1)的结果得:f[x(2-x)]<f(
1
9
),其中0<x<2,
由可(2)得:
x(2?x)> 
1
9
0<x<2
,解得x的范围是(1-
2
2
3
,1+
2
2
3
).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式