(2013?延庆县一模)如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的

(2013?延庆县一模)如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的中点.(Ⅰ)求证:PC∥平面EBD;... (2013?延庆县一模)如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的中点.(Ⅰ)求证:PC∥平面EBD;(Ⅱ)求三棱锥C-PAD的体积VC-PAD;(Ⅲ)在侧棱PC上是否存在一点M,满足PC⊥平面MBD,若存在,求PM的长;若不存在,说明理由. 展开
 我来答
裂风0269
推荐于2017-09-05 · 超过54用户采纳过TA的回答
知道答主
回答量:111
采纳率:0%
帮助的人:137万
展开全部
(Ⅰ)证明:设AC、BD相交于点F,连接EF,
∵ABCD底面ABCD为菱形,∴F为AC的中点,
又∵E为PA的中点,∴EF∥PC.
又∵EF?平面EBD,PC?平面EBD,
∴PC∥平面EBD.
(Ⅱ)解:∵底面ABCD为菱形,∠ABC=60°,
∴△ACD是边长为2正三角形,
又∵PA⊥底面ABCD,∴PA为三棱锥P-ACD的高,
∴VC-PAD=VP?ACD
1
3
S△ACD?PA=
1
3
×
3
4
×22×2=
2
3
3

(Ⅲ)解:在侧棱PC上存在一点M,满足PC⊥平面MBD,下面给出证明.
∵PA⊥底面ABCD,
又ABCD底面ABCD为菱形,∴AC⊥BD,
∵BD?平面ABCD,
∴BD⊥PC.
在△PBC内,可求PB=PC=2
2
,BC=2,
在平面PBC内,作BM⊥PC,垂足为M,
设PM=x,则有8?x2=4?(2
2
?x)2
,解得x=
3
2
2
<2
2

连接MD,∵PC⊥BD,BM⊥PC,BM∩BD=B,BM?平面BDM,BD?平面BDM,
∴PC⊥平面BDM.
所以满足条件的点M存在,此时PM的长为
3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消