(2013?延庆县一模)如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的
(2013?延庆县一模)如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的中点.(Ⅰ)求证:PC∥平面EBD;...
(2013?延庆县一模)如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的中点.(Ⅰ)求证:PC∥平面EBD;(Ⅱ)求三棱锥C-PAD的体积VC-PAD;(Ⅲ)在侧棱PC上是否存在一点M,满足PC⊥平面MBD,若存在,求PM的长;若不存在,说明理由.
展开
1个回答
展开全部
(Ⅰ)证明:设AC、BD相交于点F,连接EF,
∵ABCD底面ABCD为菱形,∴F为AC的中点,
又∵E为PA的中点,∴EF∥PC.
又∵EF?平面EBD,PC?平面EBD,
∴PC∥平面EBD.
(Ⅱ)解:∵底面ABCD为菱形,∠ABC=60°,
∴△ACD是边长为2正三角形,
又∵PA⊥底面ABCD,∴PA为三棱锥P-ACD的高,
∴VC-PAD=VP?ACD=
S△ACD?PA=
×
×22×2=
.
(Ⅲ)解:在侧棱PC上存在一点M,满足PC⊥平面MBD,下面给出证明.
∵PA⊥底面ABCD,
又ABCD底面ABCD为菱形,∴AC⊥BD,
∵BD?平面ABCD,
∴BD⊥PC.
在△PBC内,可求PB=PC=2
,BC=2,
在平面PBC内,作BM⊥PC,垂足为M,
设PM=x,则有8?x2=4?(2
?x)2,解得x=
<2
.
连接MD,∵PC⊥BD,BM⊥PC,BM∩BD=B,BM?平面BDM,BD?平面BDM,
∴PC⊥平面BDM.
所以满足条件的点M存在,此时PM的长为
∵ABCD底面ABCD为菱形,∴F为AC的中点,
又∵E为PA的中点,∴EF∥PC.
又∵EF?平面EBD,PC?平面EBD,
∴PC∥平面EBD.
(Ⅱ)解:∵底面ABCD为菱形,∠ABC=60°,
∴△ACD是边长为2正三角形,
又∵PA⊥底面ABCD,∴PA为三棱锥P-ACD的高,
∴VC-PAD=VP?ACD=
1 |
3 |
1 |
3 |
| ||
4 |
2
| ||
3 |
(Ⅲ)解:在侧棱PC上存在一点M,满足PC⊥平面MBD,下面给出证明.
∵PA⊥底面ABCD,
又ABCD底面ABCD为菱形,∴AC⊥BD,
∵BD?平面ABCD,
∴BD⊥PC.
在△PBC内,可求PB=PC=2
2 |
在平面PBC内,作BM⊥PC,垂足为M,
设PM=x,则有8?x2=4?(2
2 |
3
| ||
2 |
2 |
连接MD,∵PC⊥BD,BM⊥PC,BM∩BD=B,BM?平面BDM,BD?平面BDM,
∴PC⊥平面BDM.
所以满足条件的点M存在,此时PM的长为
3
|