如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=12cm.点P从点C处出发以1cm/s向A匀速运动,同时点Q从 B点出发

如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=12cm.点P从点C处出发以1cm/s向A匀速运动,同时点Q从B点出发以2cm/s向C点匀速移动,若一个点到达目... 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=12cm.点P从点C处出发以1cm/s向A匀速运动,同时点Q从 B点出发以2cm/s向C点匀速移动,若一个点到达目的停止运动时,另一点也随之停止运动.运动时间为t秒;(1)用含有t的代数式表示BQ、CP的长;(2)写出t的取值范围;(3)用含有t的代数式表示Rt△PCQ和四边形APQB的面积;(4)当P、Q处在什么位置时,四边形PQBA的面积最小,并求这个最小值. 展开
 我来答
中有了后人2075
2014-12-31 · TA获得超过104个赞
知道答主
回答量:175
采纳率:0%
帮助的人:122万
展开全部
(1)t时刻时,
∵点P从点C处出发以1cm/s向A匀速运动,同时点Q从B点出发以2cm/s向C点匀速移动,
∴CP=t,BQ=2t,
即用含有t的代数式表示BQ、CP的长为:BQ=2t,CP=t.

(2)∵点P从点C处出发以1cm/s向A匀速运动,同时点Q从B点出发以2cm/s向C点匀速移动,
∴Q的速度是P的两倍,
∵2AC<BC,
∴可知P先到达A点,
且t=
AC
1
=4.
∵若一个点到达目的停止运动时,另一点也随之停止运动,
∴t的取值范围是:0≤t≤4.

(3)由(1)得BQ=2t,CP=t,且BC=12cm,
∴CQ=12-2t,
∴Rt△PCQ的面积为
1
2
×CQ×CP
=
1
2
×(12-2t)×t
=t(6-t),
∵Rt△ABC的面积为
1
2
×AC×BC=
1
2
×4×12
=24,
∴四边形APQB的面积=Rt△ABC的面积-Rt△PCQ的面积=24-t(6-t).

(4)由(3)得四边形APQB的面积为24-t(6-t),
变形为t 2 -6t+24=(t-3) 2 +15,
根据二次函数的性质可知,当t=-
-6
2×1
=3时,取得最小值,解为15.
即CP=3cm,BQ=6cm时面积最小,最小为15cm 2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式