(2014?遂宁)已知:如图,⊙O的直径AB垂直于弦CD,过点C的切线与直径AB的延长线相交于点P,连结PD.(1
(2014?遂宁)已知:如图,⊙O的直径AB垂直于弦CD,过点C的切线与直径AB的延长线相交于点P,连结PD.(1)求证:PD是⊙O的切线.(2)求证:PD2=PB?PA...
(2014?遂宁)已知:如图,⊙O的直径AB垂直于弦CD,过点C的切线与直径AB的延长线相交于点P,连结PD.(1)求证:PD是⊙O的切线.(2)求证:PD2=PB?PA.(3)若PD=4,tan∠CDB=12,求直径AB的长.
展开
展开全部
(1)证明:连接OD,OC,
∵PC是⊙O的切线,
∴∠PCO=90°,
∵AB⊥CD,AB是直径,
∴弧BD=弧BC,
∴∠DOP=∠COP,
在△DOP和△COP中,
,
∴△DOP≌△COP(SAS),
∴∠PDO=∠PCO=90°,
∵D在⊙O上,
∴PD是⊙O的切线;
(2)证明:∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠PDO=90°,
∴∠ADO=∠PDB=90°-∠BDO,
∵OA=OD,
∴∠A=∠ADO,
∴∠A=∠PDB,
∵∠P=∠P,
∴△PDB∽△PAD,
∴
=
,
∴PD2=PA?PB;
(3)解:∵DC⊥AB,
∴∠ADB=∠DMB=90°,
∴∠A+∠DBM=90°,∠CDB+∠DBM=90°,
∴∠A=∠CDB,
∵tan∠CDB=
,
∴tanA=
=
,
∵△PDB∽△PAD,
∴
=
=
=
∵PD=4,
∴PB=2,PA=8,
∴AB=8-2=6.
∵PC是⊙O的切线,
∴∠PCO=90°,
∵AB⊥CD,AB是直径,
∴弧BD=弧BC,
∴∠DOP=∠COP,
在△DOP和△COP中,
|
∴△DOP≌△COP(SAS),
∴∠PDO=∠PCO=90°,
∵D在⊙O上,
∴PD是⊙O的切线;
(2)证明:∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠PDO=90°,
∴∠ADO=∠PDB=90°-∠BDO,
∵OA=OD,
∴∠A=∠ADO,
∴∠A=∠PDB,
∵∠P=∠P,
∴△PDB∽△PAD,
∴
PD |
PB |
PA |
PD |
∴PD2=PA?PB;
(3)解:∵DC⊥AB,
∴∠ADB=∠DMB=90°,
∴∠A+∠DBM=90°,∠CDB+∠DBM=90°,
∴∠A=∠CDB,
∵tan∠CDB=
1 |
2 |
∴tanA=
1 |
2 |
BD |
AD |
∵△PDB∽△PAD,
∴
PB |
PD |
PD |
PA |
BD |
AD |
1 |
2 |
∵PD=4,
∴PB=2,PA=8,
∴AB=8-2=6.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询