求一个曲面与另一个曲面所围成的立体体积这种题目应该怎么做
交线 x²+y²=4,因此V=
∫(0→2πdu) dθzhi ∫(0→2) r[√(8-r²) - r] dr
=2π[ - 1/3 (8-r²)^(3/2) - 1/3 r³ ] | (0→2)
=32(√2 - 1)π / 3。
两曲面的交线z = x^2 + 2y^2,z = 6 - 2x^2 - y^2在xy面上的投影曲线是x^2+y^2=2,所以两个曲面围成的立体在xy面上的投影区域D:x^2+y^2≤2。体积V=∫∫ [(6 - 2x^2 - y^2)-(x^2 + 2y^2)]dxdy,在极坐标系下计算即可。
体积曲面是一个永久的曲面对象。因此可以显示挖方和填方等高线以及挖方和填方点,并可以将标签添加到体积曲面。通过选择曲面特性可以查看体积曲面的体积特性(挖方、填方和净值)。
扩展资料:
当动线按照一定的规律运动时,形成的曲面称为规则曲面;当动线作不规则运动时,形成的曲面称为不规则曲面。形成曲面的母线可以是直线,也可以是曲线。如果曲面是由直线运动形成的则称为直线面(如圆柱面、圆锥面等);由曲线运动形成的曲面则称为曲线面(如球面、环面等)。直线面的连续两直素线彼此平行或相交(即它们位于同一平面上),这种能无变形地展开成一平面的曲面,属于可展曲面。如连续两直素线彼此交叉(即它们不位于同一平面上)的曲面,则属于不可展曲面。
曲面的表示法和平面的表示法相似,最基本的要求是应作出决定该曲面各几何元素的投影,如母线、导线、导面等。此外,为了清楚地表达一曲面,一般需画出曲面的外形线,以确定曲面的范围。
参考资料来源:百度百科-曲面