鬼谷子考徒弟,一道很经典的老题,能看出一个人的数学思维的高低。

孙膑,庞涓都是鬼谷子的徒弟;一天鬼出了这道题目:他从2到99中选出两个不同的整数,把和告诉庞,把积告诉孙。庞说:我虽然不能确定这两个数是什么,但是我肯定你也不知道这两个数... 孙膑,庞涓都是鬼谷子的徒弟;一天鬼出了这道题目:他从2到99中选出两个不同的整数,把和告诉庞,把积告诉孙。
庞说:我虽然不能确定这两个数是什么,但是我肯定你也不知道这两个数是什么。
孙说:我本来的确不知道,但是听你这么一说,我现在能够确定这两个数字了。
庞说:既然你这么说,我现在也知道这两个数字是什么了。
问这两个数字是什么?为什么?
(请帮忙写出详细的解题过程,谢啦!)
展开
橙橙格子社会说
2019-10-15 · 看世间百态,悟生活之度
橙橙格子社会说
采纳数:0 获赞数:266

向TA提问 私信TA
展开全部

这两个数字是4和13。

说话依次编号为S1,P1,S2。

设这两个数为x,y,和为s,积为p。

由S1,P不知道这两个数,所以s不可能是两个质数相加得来的,而且s<=41,因为如果s>41,那么P拿到41×(s-41)必定可以猜出s了。所以和s为{11,17,23,27,29,35,37,41}之一,设这个集合为A。

1).假设和是11。11=2+9=3+8=4+7=5+6,如果P拿到18,18=3×6=2×9,只有2+9落在集合A中,所以P可以说出P1,但是这时候S能不能说出S2呢?

我们来看,如果P拿到24,24=6×4=3×8=2×12,P同样可以说P1,因为至少有两种情况P都可以说出P1,所以A就无法断言S2,所以和不是11。

2).假设和是17。17=2+15=3+14=4+13=5+12=6+11=7+10=8+9,很明显,由于P拿到4×13可以断言P1,而其他情况,P都无法断言P1,所以和是17。

3).假设和是23。23=2+21=3+20=4+19=5+18=6+17=7+16=8+15=9+14=10+13=11+12,咱们先考虑含有2的n次幂或者含有大质数的那些组,如果P拿到4×19或7×16都可以断言P1,所以和不是23。

4).假设和是27。如果P拿到8×19或4×23都可以断言P1,所以和不是27。

5).假设和是29。如果P拿到13×16或7×22都可以断言P1,所以和不是29。

6).假设和是35。如果P拿到16×19或4×31都可以断言P1,所以和不是35。

7).假设和是37。如果P拿到8×29或11×26都可以断言P1,所以和不是37。

8).假设和是41。如果B拿到4×37或8×33,都可以断言P1,所以和不是41。

综上所述:这两个数是4和13。

扩展资料:

鬼谷子,活跃于春秋末至战国时期,史称东周卫国人,在世百年,后不知去向。常年入清溪云梦山鬼谷采药修道,被誉为千古奇人。是中国历史上极其神奇且神秘的人物!

鬼谷子身怀旷世绝学,既通晓自然宇宙玄妙,又会奇门百家!《鬼谷子》培养了:苏秦、张仪、孙膑、庞涓等多位精英,这些弟子进山之前都是无名小卒,出山后个个大放异彩,出将入相,名流千古!

而各家中又以兵家与纵横家者成就最为显著且最为人所熟知!“关于兵家的代表人物:白起战无不克,王翦横扫六国。关于纵横家的代表人物:一人之言,重于九鼎之宝。三寸之舌,胜过百万雄师!”

苏秦和张仪,太史公司马迁就曾在其《史记》中郑重写道:“此二人真乃倾危之士也!”一笑则而天下兴,一怒使诸侯惧。《孟子·滕文公下》。鬼谷之厉害,由此可见一斑!

鬼谷门人遍布各地、风云一时,个个都建立了不朽之功业:庞涓遇羊而荣,孙膑逢战不输,苏秦佩六国相印,张仪两次做秦国宰相;还有商鞅李斯,一个为孝公改革变法,一个助始皇一统山河!

至于后来东渡日本的徐福,据传则成了日本的第一位天皇:神武天皇。如今日本民间遍立庙堂在朝拜,很多日本人甚至公开声称自己就是徐福后代,并留有家传徐氏族谱可供阅览。

堂洋公羊从
2020-03-26 · TA获得超过3602个赞
知道大有可为答主
回答量:3112
采纳率:33%
帮助的人:167万
展开全部
解题思路1:
假设数为
X,Y;和为X+Y=A,积为X*Y=B.
根据庞第一次所说的:“我肯定你也不知道这两个数是什么”。由此知道,X+Y不是两个素数之和。那么A的可能11,17,23,27,29,35,37,41,47,51,53,57,59,65,67,71,77,79,83,87,89,95,97.
我们再计算一下B的可能值:
和是11能得到的积:18,24,28,30
和是17能得到的积:30,42,52,60,66,70,72
和是23能得到的积:42,60...
和是27能得到的积:50,72...
和是29能得到的积:...
和是35能得到的积:66...
和是37能得到的积:70...
......
我们可以得出可能的B为....,当然了,有些数(30=5*6=2*15)出现不止一次。
这时候,孙依据自己的数比较计算后,“我现在能够确定这两个数字了。”
我们依据这句话,和我们算出来的B的集合,我们又可以把计算出来的B的集合删除一些重复数。
和是11能得到的积:18,24,28
和是17能得到的积:52
和是23能得到的积:42,76...
和是27能得到的积:50,92...
和是29能得到的积:54,78...
和是35能得到的积:96,124...
和是37能得到的积:,...
......
因为庞说:“既然你这么说,我现在也知道这两个数字是什么了。”那么由和得出的积也必须是唯一的,由上面知道只有一行是剩下一个数的,那就是和17积52。那么X和Y分别是4和13。
解题思路2:
说话依次编号为S1,P1,S2。
设这两个数为x,y,和为s,积为p。
由S1,P不知道这两个数,所以s不可能是两个质数相加得来的,而且s<=41,因为如果s>41,那么P拿到41×(s-41)必定可以猜出s了(关于这一点,参考老马的证明,这一点很巧妙,可以省不少事情)。所以和s为{11,17,23,27,29,35,37,41}之一,设这个集合为A。
1).假设和是11。11=2+9=3+8=4+7=5+6,如果P拿到18,18=3×6=2×9,只有2+9落在集合A中,所以P可以说出P1,但是这时候S能不能说出S2呢?我们来看,如果P拿到24,24=6×4=3×8=2×12,P同样可以说P1,因为至少有两种情况P都可以说出P1,所以A就无法断言S2,所以和不是11。
2).假设和是17。17=2+15=3+14=4+13=5+12=6+11=7+10=8+9,很明显,由于P拿到4×13可以断言P1,而其他情况,P都无法断言P1,所以和是17。
3).假设和是23。23=2+21=3+20=4+19=5+18=6+17=7+16=8+15=9+14=10+13=11+12,咱们先考虑含有2的n次幂或者含有大质数的那些组,如果P拿到4×19或7×16都可以断言P1,所以和不是23。
4).假设和是27。如果P拿到8×19或4×23都可以断言P1,所以和不是27。
5).假设和是29。如果P拿到13×16或7×22都可以断言P1,所以和不是29。
6).假设和是35。如果P拿到16×19或4×31都可以断言P1,所以和不是35。
7).假设和是37。如果P拿到8×29或11×26都可以断言P1,所以和不是37。
8).假设和是41。如果B拿到4×37或8×33,都可以断言P1,所以和不是41。
综上所述:这两个数是4和13。
解题思路3:
孙庞猜数的手算推理解法
1)按照庞的第一句话的后半部分,我们肯定庞知道的和S肯定不会大于54。
因为如果和54<S<54+99,那么S可以写为S=53+a,a<=99。如果鬼谷子选的两个数字
恰好是53和a,那么孙知道的积M就是M=53*a,于是孙知道,这原来两个数中至少有
一个含有53这个因子,因为53是个素数。可是小于100,又有53这个因子的,只能是
53本身,所以孙就可以只凭这个积53*a推断出这两个数术53和a。所以如果庞知道的
S大于54的话,他就不敢排除两个数是53和a这种可能,也就不敢贸然说“但是我肯定
你也不知道这两个数是什么”这种话。
如果53+99<S<=97+99,那么S可以写为S=97+a,同以上推理,也不可能。
如果S=98+99,那么庞可以立刻判断出,这两个数只能是98和99,而且M只能是98*99,
孙也可以知道这两个术,所以显然不可能。
2)按照庞的第一句话的后半部分,我们还可以肯定庞知道的和S不可以表示为两个素数的和。
否则的话,如果鬼谷子选的两个数字恰好就是这两个素数,那么孙知道积M后,就可以得到唯一的素因子分解,判断出结果。于是庞还是不敢说“但是我肯定你也不知道这两个数是什么”这种话。
根据哥德巴赫猜想,任何大于4的偶数都可以表示为两个素数之和,对54以下的偶数,猜想肯定被验证过,所以S一定不能是偶数。
另外型为S=2+p的奇数,其中p是奇素数的那些S也同样要排除掉。
还有S=51也要排除掉,因为51=17+2*17。如果鬼谷子选的是(17,2*17),那么孙知道
的将是M=2*17*17,他对鬼谷子原来的两数的猜想只能是(17,2*17)。(为什么51要单独拿出来,要看下面的推理)
3)于是我们得到S必须在以下数中:
11
17
23
27
29
35
37
41
47
53
另外一方面,只要庞的S在上面这些数中,他就可以说“但是我肯定你也不知道这两个
数是什么”,因为这些数无论怎么拆成两数和,都至少有一个数是合数(必是一偶一
奇,如果偶的那个大于2,它就是合数,如果偶的那个等于2,我们上面的步骤已经保
证奇的那个是合数),也就是S只能拆成
a)
S=2+a*b

b)
S=a+2^n*b
这两个样子,其中a和b都是奇数,n>=1。
那么(下面我说的“至少两组数”中的两组数都不相同,而且的确存在(也就是那些
数都小于100)的理由我就不写了,根据条件很显然)
a)或者孙的M=2*a*b,孙就会在(2*a,b)和(2,a*b)至少两组数里拿不定主意(a和
b都是奇数,所以这两组数一定不同);
b)或者M=2^n*a*b,
如果n>1,那么孙就会在(2^(n-1)*a,2*b)和(2^n*a,b)至少两组数里拿不定主意;
如果n=1,而且a不等于b,那么孙就会在(2*a,b)和(2b,a)至少两组数里拿不定主
意;
如果n=1,而且a等于b,这意味着S=a+2*a=3a,所以S一定是3的倍数,我们只要
讨论S=27就可以了。27如果被拆成了S=9+18,那么孙拿到的M=9*18,他就会在
(9,18)和(27,6)至少两组数里拿不定主意。
(上面对51的讨论就是从这最后一种情况的讨论发现的,我不知道上面的论证是否
过分烦琐了,但是看看51这个“特例”,我怀疑严格的论证可能就得这么烦)
现在我们知道,当且仅当庞得到的和数S在
C={11,
17,
23,
27,
29,
35,
37,
41,
47,
53}
中,他才会说出“我虽然不能确定这两个数是什么,但是我肯定你也不知道这两个数
是什么”这句话
孙膑可以和我们得到同样的结论,他还比我们多知道那个M。
4)孙的话“我现在能够确定这两个数字了”表明,他把M分解成素因子后,然后组合成
关于鬼谷子的那两个数的若干个猜想中,有且仅有一个猜想的和在C中。否则的话,他
还是会在多个猜想之间拿不定主意。
庞涓听了孙的话也可以得到和我们一样的结论,他还比我们多知道那个S。
5)庞的话“我现在也知道这两个数字是什么了”表明,他把S拆成两数和后,也得到了
关于鬼谷子的那两个数的若干个猜想,但是在所有这些拆法中,只有一种满足4)里的
条件,否则他不会知道究竟是哪种情况,使得孙膑推断出那两个数来。
于是我们可以排除掉C中那些可以用两种方法表示为S=2^n+p的S,其中n>1,p为素数。
因为如果S=2^n1+p1=2^n2+p2,无论是(2^n1,p1)还是(2^n2,p2)这两种情况,孙膑都
可以由M=2^n1*p1或M=2^n2*p2来断定出正确的结果,因为由M得到的各种两数组合,
只有(2^n,p)这样的组合,两数和才是奇数,从而在C中,于是孙膑就可以宣布自己知道
了是怎么回事,可庞涓却还得为(2^n1,p1)还是(2^n2,p2)这两种情况犯愁。
因为11=4+7=8+3,23=4+19=16+7,27=4+23=16+11,35=4+31=16+19,37=8+29=32+5,
47=4+43=16+31。于是S的可能值只能在
17
29
41
53
中。让我们继续缩小这个表。
29不可能,因为29=2+27=4+25。无论是(2,27)和(4,25),孙膑都可以正确判断出来:
a)如果是(2,27),M=2*27=2*3*3*3,那么孙可以猜的组合是(2,27)(3,18)(6,9),
后面两种对应的S为21和15,都不在C中,故不可能,于是只能是(2,27)。
b)如果是(4,25),M=4*25=2*2*5*5,那么孙可以猜的组合是(2,50)(4,25)(5,20)
(10,10)。只有(4,25)的S才在C中。
可是庞涓却要为孙膑的M到底是2*27还是4*25苦恼。
41不可能,因为41=4+37=10+31。后面推理略。
53不可能,因为53=6+47=16+37。后面推理略。
研究一下17。这下我们得考虑所有17的两数和拆法:
(2,15):那么M=2*15=2*3*5=6*5,而6+5=11也在C中,所以一定不是这个M,否则4)
的条件不能满足,孙“我现在能够确定这两个数字了”的话说不出来。
(3,14):那么M=3*14=2*3*7=2*21,而2+21=23也在C中。后面推理略。
(4,13):那么M=4*13=2*2*13。那么孙可以猜的组合是(2,26)(4,13),只有(4,13)
的和在C中,所以这种情况孙膑可以说4)中的话。
(5,12):那么M=5*12=2*2*3*5=3*20,而3+20=23也在C中。后面推理略。
(6,11):那么M=6*11=2*3*11=2*33,而2+33=35也在C中。后面推理略。
(7,10):那么M=7*10=2*5*7=2*35,而2+35=37也在C中。后面推理略。
(8,9):那么M=8*9=2*2*2*3*3=3*24,而3+24=27也在C中。后面推理略。
于是在S=17时,只有(4,13)这种情况,孙膑才可以猜出那两数是什么,既然如此,庞涓就知道这两个数是什么,说出“我现在也知道这两个数字是什么了”。听了庞涓的话,于是我们也知道,这两数该是(4,13)。
参考答案:
这两个数字是4和13。原因同上。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
鸢尾王朝
推荐于2017-11-23
知道答主
回答量:6
采纳率:0%
帮助的人:0
展开全部
解题思路1:

假设数为 X,Y;和为X+Y=A,积为X*Y=B.
根据庞第一次所说的:“我肯定你也不知道这两个数是什么”。由此知道,X+Y不是两个素数之和。那么A的可能11,17,23,27,29,35,37,41,47,51,53,57,59,65,67,71,77,79,83,87,89,95,97.
我们再计算一下B的可能值:
和是11能得到的积:18,24,28,30
和是17能得到的积:30,42,52,60,66,70,72
和是23能得到的积:42,60...
和是27能得到的积:50,72...
和是29能得到的积:...
和是35能得到的积:66...
和是37能得到的积:70...
......
我们可以得出可能的B为....,当然了,有些数(30=5*6=2*15)出现不止一次。

这时候,孙依据自己的数比较计算后,“我现在能够确定这两个数字了。”
我们依据这句话,和我们算出来的B的集合,我们又可以把计算出来的B的集合删除一些重复数。

和是11能得到的积:18,24,28
和是17能得到的积:52
和是23能得到的积:42,76...
和是27能得到的积:50,92...
和是29能得到的积:54,78...
和是35能得到的积:96,124...
和是37能得到的积:,...
......
因为庞说:“既然你这么说,我现在也知道这两个数字是什么了。”那么由和得出的积也必须是唯一的,由上面知道只有一行是剩下一个数的,那就是和17积52。那么X和Y分别是4和13。

解题思路2:

说话依次编号为S1,P1,S2。
设这两个数为x,y,和为s,积为p。
由S1,P不知道这两个数,所以s不可能是两个质数相加得来的,而且s<=41,因为如果s>41,那么P拿到41×(s-41)必定可以猜出s了(关于这一点,参考老马的证明,这一点很巧妙,可以省不少事情)。所以和s为{11,17,23,27,29,35,37,41}之一,设这个集合为A。
1).假设和是11。11=2+9=3+8=4+7=5+6,如果P拿到18,18=3×6=2×9,只有2+9落在集合A中,所以P可以说出P1,但是这时候S能不能说出S2呢?我们来看,如果P拿到24,24=6×4=3×8=2×12,P同样可以说P1,因为至少有两种情况P都可以说出P1,所以A就无法断言S2,所以和不是11。
2).假设和是17。17=2+15=3+14=4+13=5+12=6+11=7+10=8+9,很明显,由于P拿到4×13可以断言P1,而其他情况,P都无法断言P1,所以和是17。
3).假设和是23。23=2+21=3+20=4+19=5+18=6+17=7+16=8+15=9+14=10+13=11+12,咱们先考虑含有2的n次幂或者含有大质数的那些组,如果P拿到4×19或7×16都可以断言P1,所以和不是23。
4).假设和是27。如果P拿到8×19或4×23都可以断言P1,所以和不是27。
5).假设和是29。如果P拿到13×16或7×22都可以断言P1,所以和不是29。
6).假设和是35。如果P拿到16×19或4×31都可以断言P1,所以和不是35。
7).假设和是37。如果P拿到8×29或11×26都可以断言P1,所以和不是37。
8).假设和是41。如果B拿到4×37或8×33,都可以断言P1,所以和不是41。
综上所述:这两个数是4和13。

解题思路3:

孙庞猜数的手算推理解法

1)按照庞的第一句话的后半部分,我们肯定庞知道的和S肯定不会大于54。

因为如果和54<S<54+99,那么S可以写为S=53+a,a<=99。如果鬼谷子选的两个数字
恰好是53和a,那么孙知道的积M就是M=53*a,于是孙知道,这原来两个数中至少有
一个含有53这个因子,因为53是个素数。可是小于100,又有53这个因子的,只能是
53本身,所以孙就可以只凭这个积53*a推断出这两个数术53和a。所以如果庞知道的
S大于54的话,他就不敢排除两个数是53和a这种可能,也就不敢贸然说“但是我肯定
你也不知道这两个数是什么”这种话。

如果53+99<S<=97+99,那么S可以写为S=97+a,同以上推理,也不可能。

如果S=98+99,那么庞可以立刻判断出,这两个数只能是98和99,而且M只能是98*99,
孙也可以知道这两个术,所以显然不可能。

2)按照庞的第一句话的后半部分,我们还可以肯定庞知道的和S不可以表示为两个素数的和。

否则的话,如果鬼谷子选的两个数字恰好就是这两个素数,那么孙知道积M后,就可以得到唯一的素因子分解,判断出结果。于是庞还是不敢说“但是我肯定你也不知道这两个数是什么”这种话。

根据哥德巴赫猜想,任何大于4的偶数都可以表示为两个素数之和,对54以下的偶数,猜想肯定被验证过,所以S一定不能是偶数。

另外型为S=2+p的奇数,其中p是奇素数的那些S也同样要排除掉。

还有S=51也要排除掉,因为51=17+2*17。如果鬼谷子选的是(17,2*17),那么孙知道
的将是M=2*17*17,他对鬼谷子原来的两数的猜想只能是(17,2*17)。(为什么51要单独拿出来,要看下面的推理)

3)于是我们得到S必须在以下数中:
11 17 23 27 29 35 37 41 47 53

另外一方面,只要庞的S在上面这些数中,他就可以说“但是我肯定你也不知道这两个
数是什么”,因为这些数无论怎么拆成两数和,都至少有一个数是合数(必是一偶一
奇,如果偶的那个大于2,它就是合数,如果偶的那个等于2,我们上面的步骤已经保
证奇的那个是合数),也就是S只能拆成
a) S=2+a*b 或 b) S=a+2^n*b
这两个样子,其中a和b都是奇数,n>=1。
那么(下面我说的“至少两组数”中的两组数都不相同,而且的确存在(也就是那些
数都小于100)的理由我就不写了,根据条件很显然)
a)或者孙的M=2*a*b,孙就会在(2*a,b)和(2,a*b)至少两组数里拿不定主意(a和
b都是奇数,所以这两组数一定不同);
b)或者M=2^n*a*b,
如果n>1,那么孙就会在(2^(n-1)*a,2*b)和(2^n*a,b)至少两组数里拿不定主意;
如果n=1,而且a不等于b,那么孙就会在(2*a,b)和(2b,a)至少两组数里拿不定主
意;
如果n=1,而且a等于b,这意味着S=a+2*a=3a,所以S一定是3的倍数,我们只要
讨论S=27就可以了。27如果被拆成了S=9+18,那么孙拿到的M=9*18,他就会在
(9,18)和(27,6)至少两组数里拿不定主意。
(上面对51的讨论就是从这最后一种情况的讨论发现的,我不知道上面的论证是否
过分烦琐了,但是看看51这个“特例”,我怀疑严格的论证可能就得这么烦)

现在我们知道,当且仅当庞得到的和数S在
C={11, 17, 23, 27, 29, 35, 37, 41, 47, 53}
中,他才会说出“我虽然不能确定这两个数是什么,但是我肯定你也不知道这两个数
是什么”这句话

孙膑可以和我们得到同样的结论,他还比我们多知道那个M。

4)孙的话“我现在能够确定这两个数字了”表明,他把M分解成素因子后,然后组合成
关于鬼谷子的那两个数的若干个猜想中,有且仅有一个猜想的和在C中。否则的话,他
还是会在多个猜想之间拿不定主意。

庞涓听了孙的话也可以得到和我们一样的结论,他还比我们多知道那个S。

5)庞的话“我现在也知道这两个数字是什么了”表明,他把S拆成两数和后,也得到了
关于鬼谷子的那两个数的若干个猜想,但是在所有这些拆法中,只有一种满足4)里的
条件,否则他不会知道究竟是哪种情况,使得孙膑推断出那两个数来。

于是我们可以排除掉C中那些可以用两种方法表示为S=2^n+p的S,其中n>1,p为素数。
因为如果S=2^n1+p1=2^n2+p2,无论是(2^n1,p1)还是(2^n2,p2)这两种情况,孙膑都
可以由M=2^n1*p1或M=2^n2*p2来断定出正确的结果,因为由M得到的各种两数组合,
只有(2^n,p)这样的组合,两数和才是奇数,从而在C中,于是孙膑就可以宣布自己知道
了是怎么回事,可庞涓却还得为(2^n1,p1)还是(2^n2,p2)这两种情况犯愁。

因为11=4+7=8+3,23=4+19=16+7,27=4+23=16+11,35=4+31=16+19,37=8+29=32+5,
47=4+43=16+31。于是S的可能值只能在
17 29 41 53
中。让我们继续缩小这个表。

29不可能,因为29=2+27=4+25。无论是(2,27)和(4,25),孙膑都可以正确判断出来:
a)如果是(2,27),M=2*27=2*3*3*3,那么孙可以猜的组合是(2,27)(3,18)(6,9),
后面两种对应的S为21和15,都不在C中,故不可能,于是只能是(2,27)。
b)如果是(4,25),M=4*25=2*2*5*5,那么孙可以猜的组合是(2,50)(4,25)(5,20)
(10,10)。只有(4,25)的S才在C中。
可是庞涓却要为孙膑的M到底是2*27还是4*25苦恼。

41不可能,因为41=4+37=10+31。后面推理略。

53不可能,因为53=6+47=16+37。后面推理略。

研究一下17。这下我们得考虑所有17的两数和拆法:
(2,15):那么M=2*15=2*3*5=6*5,而6+5=11也在C中,所以一定不是这个M,否则4)
的条件不能满足,孙“我现在能够确定这两个数字了”的话说不出来。
(3,14):那么M=3*14=2*3*7=2*21,而2+21=23也在C中。后面推理略。
(4,13):那么M=4*13=2*2*13。那么孙可以猜的组合是(2,26)(4,13),只有(4,13)
的和在C中,所以这种情况孙膑可以说4)中的话。
(5,12):那么M=5*12=2*2*3*5=3*20,而3+20=23也在C中。后面推理略。
(6,11):那么M=6*11=2*3*11=2*33,而2+33=35也在C中。后面推理略。
(7,10):那么M=7*10=2*5*7=2*35,而2+35=37也在C中。后面推理略。
(8,9):那么M=8*9=2*2*2*3*3=3*24,而3+24=27也在C中。后面推理略。

于是在S=17时,只有(4,13)这种情况,孙膑才可以猜出那两数是什么,既然如此,庞涓就知道这两个数是什么,说出“我现在也知道这两个数字是什么了”。听了庞涓的话,于是我们也知道,这两数该是(4,13)。

参考答案:

这两个数字是4和13。原因同上。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式