原子吸收光谱法
2020-01-15 · 技术研发知识服务融合发展。
一、内容概述
原子吸收光谱法(AAS)又称为原子吸收分光光度法,基本原理是每种元素都有其特征的光谱线,当光源发射的某一特征波长的光通过待测样品的原子蒸气时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使光源发出的入射光减弱,可以将特征谱线因吸收而减弱的程度用吸光度表示,吸光度与被测样品中的待测元素含量成正比;即基态原子的浓度越大,吸收的光量越多,通过测定吸收的光量就可以求出样品中待测的金属及类金属物质的含量,对于大多数金属元素而言,共振线是该元素所有谱线中最灵敏的谱线,这就是该法之所以有较好的选择性,可以测定微量元素的根本原因。
原子吸收光谱仪可测定多种元素,火焰原子吸收光谱法可测到10 -9 g/mL数量级,石墨炉原子吸收法可测到10 -13 g/mL数量级。其氢化物发生器可对8种挥发性元素汞、砷、铅、硒、锡、碲、锑、锗等进行微痕量测定。在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。
二、应用范围及应用实例
(一)石墨炉原子吸收法检测化探样品中Au的不确定度
2013年最新推出的Z-3000系列原子吸收光谱仪,它应用两个完全匹配的光电倍增管做检测器,分别接受光源中偏振面平行于磁场和垂直于磁场的偏振方向的辐射,测量原子吸收线的π成分及σ±成分,实现背景校正。这是一个理想的方案,可以保证在同一波长、同一测量空间、同一时间(实时)进行背景校正。
Z-3000 AAS的稳定性极好,因为普通原子吸收石墨炉上石墨管的电阻极小,需要使用低压大电流,通常要使石墨管升至3000℃需要400~600 A的电流。Z-3000 AAS 石墨炉使用的是高阻值石墨管,石墨的阻值在30~33 mΩ。使用高阻值石墨管就可以在小的加热电流下工作,要将石墨炉加热到3000℃温度时,在市电电源上所用的电流仅为15 A。由于加热电流值低,内置变压器与石墨炉连接使用了实心电缆,各接触点和电缆中的损耗极小。石墨炉体最大功率升温时,升温速率达到2600℃/s,提高灵敏度的同时给出极佳的检测稳定性和重现性,降低了基体干扰,极大地提高了石墨管的使用寿命,从80~400次/只增加到2000~4800次/只。
它具有语音自动导航、全信息分析软件、多媒体操作教程、视频维护保养程序,几乎无须任何使用说明书即可操作仪器。在地矿系统实验室有着广泛的用户基础和地球化探样品的测试方法。
(二)电热原子吸收光谱法(ET-AAS)同时测定沉积物中的 As、Cd、Cu、Cr、Ni、Pb和Ti
María A(2012)使用ET AAS同时测定了沉积物中重金属As、Cd、Cu、Cr、Ni、Pb和Ti的总量及其分布情况。该方法使用3×3的Box-Behnken 设计矩阵。对修改后的BCR连续萃取方案和总分布分析矩阵的条件进行了优化,以确定适当的雾化温度和群众钯(NO3)2和Mg(NO3)2。考虑对所有矩阵中的元素进行同时测定,在不使用的化学改性剂的情况下,在1700℃下对Cd和Ti进行雾化,2100℃下雾化砷、铜、铬、镍和铅,使用一个标准的校准曲线校准。得到的砷、镉、铬、铜、镍、铅和铊的检测限分别为36.5pg、1.8pg、6.5pg、28pg、34pg、46.5pg、48pg和0.11μg/g、0.001μg/g、0.022μg/g、0.04μg/g、0.2μg/g、0.03μg/g、0.003μg/g。通过分析3个泥沙质标准参考物质(CRM直流73315和LKSD的NCS-4的总含量和BCR 701可用的分数),对该方法进行了验证,得到良好的精度(P=0.05,并显示出每个矩阵中的每个元素的高回收率),除了总砷的分布矩阵,其中被分析物的损失可以归因于样品处理过程中用的HNO3。该方法的精度在0.6%和6%之间。
(三)冷原子吸收测定废水中的As、Se和Hg
Aaron等使用PinAAcle 900T光谱仪和FIAS 400流动注射系统,应用Winlab 32TM数据平台分析测试了废水中的As、Se和Hg的含量,结果如表1所示。
表1 系统灵敏度指标
分析结果表明,该方法的检出限可以满足美国EPA生活饮用水卫生规范的要求,As和Se的检出限还可以满足加拿大环境委员会(CCME)的标准,该方法对Hg的检出能力可以达到加拿大土壤分析的检出限标准。但如果要达到CCME针对海洋保护提出的汞标准,该方法还需要配备流动注射系统(FIMS)或者更大的进样回路。
(四)contrAA® 700 火焰原子吸收光谱法测定长石中Fe、Ca、K、Na 和Mg的含量
2006年,德国耶拿公司推出了高分辨火焰/石墨炉一体连续光源原子吸收光谱仪contrAA® 700,该仪器使用高聚焦短弧氙灯、中阶梯光栅光谱仪(光学分辨率0.002nm,波长范围189~900nm)、CCD线阵检测器,可测量元素周期表中67个金属元素,同时还可能获得更多的光谱信息。
Song等(2010)使用contrAA®700测定了长石中的Fe、Ca、K、Na和Mg的含量(图1~图10)。
图1 铁的特征吸收峰图
图2 铁三维测试峰图
图3 钙的特征吸收峰图
图4 钙的特征吸收峰图
图5 钾的特征吸收峰图
图6 钾三维测试峰图
图7 钠的特征吸收峰图
图8 钠三维测试峰图
图9 镁的特征吸收峰图
图10 镁三维测试峰图
结果表明,采用连续光源原子吸收法可以快速、准确地测定长石中痕量金属元素Fe、Ca、K、Na、Mg的含量,即使样品消解液中待测元素含量超低,可以增加像素点数来提高灵敏度,这是连续光源原子吸收优于传统原子吸收的独一无二的特点之一;另外,某些元素含量超高(百分含量),如果选择次灵敏线,传统原子吸收往往由于分辨率和光源强度有限,存在光谱干扰以及灯能量不足的问题,无法避免稀释带来的误差。由于连续光源具有极高的分辨率(2pm)和足够高的发光强度,可以任意选择不同灵敏度的谱线,并且有效避免光谱干扰,与此同时,完全消除了稀释误差。
(五)火焰原子吸收光谱法测定铁矿石原料中K、Na、As、Sn、Pb、Zn的含量
Song等(2010)使用连续光源ContrAA® 700准确快速地测定了铁矿石原料中多种金属元素的含量,与传统原子吸收相比分辨率有了两个数量级的提升。高浓度金属钠的测定可以选择次灵敏线准确实现分析测定,从而有效地避免了稀释带来的误差。
样品经过酸前处理后,按一定比例稀释,用ContrAA® 700 火焰原子吸收光谱法进行测量。测量条件分别为:
国外地质矿产科技成果
其中Sn的标准曲线为:
国外地质矿产科技成果
三、资料来源
张华,王开奇.2008.石墨炉原子吸收光谱法测定化探样品中进的不确定度评定.矿床地质,27:91~95
www.analytik-jena.com.cn/ 宋春明等.德国耶拿分析仪器股份公司,2010
Aaron Hineman.Determination of As,Se and Hg in Waters by Hydride Generation/Cold Vapor Atomic Absorption Spectroscopy
María A.Álvarez,Génesis Carrillo.2012.Simultaneous determination of arsenic,cadmium,copper,chromium,nickel,lead and thallium in total digested sediment samples and available fractions by electrothermal atomization atomic absorption spectroscopy(ET AAS).Talanta,97(15):505~512
2024-02-20 广告
原子吸收光谱分析的基本原理
气态自由原子通过获取电磁辐射能跃迁到更高能态,外层电子跃迁到更高能级水平,并成为激发态原子。只有特定波长的辐射可以被吸收,因为基态原子只吸收一定的能量。被选择的谱线的辐射强度对应的吸收值与吸收体积中产生吸收的原子的数量,即样品中元素的浓度有关,这种关系就是研究样品中某一元素的定量测定的基本原理。
原子吸收光谱法采用的原子化方法主要有火焰法、石墨炉法和氢化物发生法。
(1)火焰原子吸收光谱法
目前,火焰原子吸收光谱法是应用较为广泛的方法。因为其对大多数的元素都适用,而且具有速度快,成本低,操作简单,结果误差不大的优势。
在实验室中,大多采用空气-乙炔火焰,温度约为2300摄氏度,并不能融化所有元素,所以在后续的实验中将空气改为了预混合氧,提高氧气的含量来使火焰温度升高。再后来有人提出火焰改为氧化亚氮-乙炔,这种火焰温度可达3000摄氏度高温,能有效解决大多数难融元素的问题。
(2)石墨炉原子吸收光谱法
石墨炉原子吸收光谱法是一种用电流加热原子化的分析方法。横向加热石墨炉解决了温度分布不均匀的问题。这种技术测试的样品可以是液体,也可以是固体。液体或固体样品都可以直接进入石墨管。
石墨炉原子化的出现非常之重要,对于火焰原子化有着较为明显的优越性,与火焰原子化技术对比,灵敏度提高到3到4个数量线,达到了10-12至10-14g的灵敏度,但是石墨炉原子吸收光谱法还是存在一定的局限性:重现性还没有火焰法高,当待测样品比较复杂时,产生的结果会有很大的误差。
(3)氢化物发生法
氢化物发生法适用于容易产生阴离子的元素,如Se、Sn、Sb、As、Pb、Hg、Ge、Bi等。这些元素一般不采取火焰原子化法检测,而是用硼氢化钠处理,因为硼氢化钠具有还原性,可以将这些元素还原成为阴离子,与硼氢化钠中电离产生的氢离子结合成气态氢化物。
如土壤监测中运用流动注射氢化物原子吸收检测河流中所含的沉积物汞和砷,经过试验后,检出砷限为2ng/L,精密度为1.35%至5.07%,准确度在93.5%至106.0%;检出汞限为2ng/L,精密度为0.96%至5.52%,精准度在93.1%至109.5%。这种方法不仅快速、简便,且准确度和精密度非常高,能更好的测试和分析环境样品。