∫x/(1+x²) dx=?
3个回答
展开全部
答案为0.5 *ln|x²+1| +C,C为常数
解题过程如下:
∫ x/(x²+1) dx
=0.5 *∫ 2x/(x²+1) dx
=0.5 *∫ 1/(x²+1) d(x²+1) 由基本积分公式可以得到
=0.5 *ln|x²+1| +C,C为常数
扩展资料
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工...
点击进入详情页
本回答由华瑞RAE一级代理商提供
展开全部
∫x²√(1+x²)dx
令x=tanθ,
原式=∫tan²θsecθdtanθ
=∫tan²θsec³θdθ
=∫(sec²θ-1)sec³θdθ
=∫sec^5θdθ-∫sec³θdθ
∫sec^5θdθ
=∫sec³θdtanθ
=sec³θtanθ-∫tanθdsec³θ
=sec³θtanθ-3∫sec³θ*tan²θdθ
=sec³θtanθ-3∫sec³θ(sec²θ-1)dθ
=sec³θtanθ-3∫sec^5θ+3∫sec³θdθ
∫sec^5θ=sec³θtanθ/4+3/4∫sec³θdθ
∫sec^5θdθ-∫sec³θdθ=sec³θtanθ/4-1/4∫sec³θdθ
∫sec³θdθ
=∫secθdtanθ
=secθtanθ-∫tanθdsecθ
=secθtanθ-∫tan²θsecθdθ
=secθtanθ-∫(sec²θ-1)secθdθ
=secθtanθ-∫sec³θdθ+∫secθdθ
=secθtanθ-∫sec³θdθ+ln|secθ+tanθ|
∫sec³θdθ=(secθtanθ+ln|secθ+tanθ|)/2
sec³θtanθ/4-1/4∫sec³θdθ=sec³θtanθ/4-(secθtanθ+ln|secθ+tanθ|)/8
secθ=√(1+x²) tanθ=x
原式=(x+x³)√(1+x²)/4-(x√(1+x²)+ln|√(1+x²)+x|)/8
令x=tanθ,
原式=∫tan²θsecθdtanθ
=∫tan²θsec³θdθ
=∫(sec²θ-1)sec³θdθ
=∫sec^5θdθ-∫sec³θdθ
∫sec^5θdθ
=∫sec³θdtanθ
=sec³θtanθ-∫tanθdsec³θ
=sec³θtanθ-3∫sec³θ*tan²θdθ
=sec³θtanθ-3∫sec³θ(sec²θ-1)dθ
=sec³θtanθ-3∫sec^5θ+3∫sec³θdθ
∫sec^5θ=sec³θtanθ/4+3/4∫sec³θdθ
∫sec^5θdθ-∫sec³θdθ=sec³θtanθ/4-1/4∫sec³θdθ
∫sec³θdθ
=∫secθdtanθ
=secθtanθ-∫tanθdsecθ
=secθtanθ-∫tan²θsecθdθ
=secθtanθ-∫(sec²θ-1)secθdθ
=secθtanθ-∫sec³θdθ+∫secθdθ
=secθtanθ-∫sec³θdθ+ln|secθ+tanθ|
∫sec³θdθ=(secθtanθ+ln|secθ+tanθ|)/2
sec³θtanθ/4-1/4∫sec³θdθ=sec³θtanθ/4-(secθtanθ+ln|secθ+tanθ|)/8
secθ=√(1+x²) tanθ=x
原式=(x+x³)√(1+x²)/4-(x√(1+x²)+ln|√(1+x²)+x|)/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询