当x趋于正无穷时,如何使用洛必达法则求极限lim((e^(1/x))-1)?

 我来答
訾子明屈庆
2020-06-06 · TA获得超过3万个赞
知道大有可为答主
回答量:9549
采纳率:35%
帮助的人:1001万
展开全部
洛比达法则适用的未定型有无穷比无穷、零比零型等,lim(e^(1/x))-1)是那种呢?这个直接做就好了,当x趋近于零时1/x趋近于零,e^(1/x)趋近于1,1-1就等于零,洛比达法则为一些待定型的极限求法提供了很好的思路,但有些用它求起来可能会麻烦了,用等价无穷小也很容易看出来的
童运恒紫晔
2019-11-13 · TA获得超过3万个赞
知道大有可为答主
回答量:1.2万
采纳率:30%
帮助的人:679万
展开全部
e^(1/x))-1等价于1/x(x趋于正无穷),先用等价无穷小量代换,在用罗比达法则求导,会简单的多
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
张廖琇云力飞
2020-03-23 · TA获得超过3万个赞
知道大有可为答主
回答量:1.2万
采纳率:30%
帮助的人:785万
展开全部
貌似不需要罗比达法则
这个极限等于
e^0-1=1-1=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式