已知x、y、z都是实数,且满足条件已知xyz为实数,且满足x+2y-z=6,x-y+2z=3,则x^2+y^2+z^2的最小值为
展开全部
设x^2+y^2+z^2=t
由3x+2y+2z=17得:y+z=(17-3x)/2
又y^2+z^2=t-x^2可变得:yz=(17-3x)^2/8+(x^2-t)/2
y,z可以看成m^2-[(17-3x)/2]+(17-3x)^2/8+(x^2-t)/2=0的两根
于是由判别式>=0列式得:(17-3x)^2/4-4[(17-3x)^2/8+(x^2-t)/2]>=0
化简得:t>={17(x-3)^2+136}/8
当x=3时,t取得最小值t=136/8=17即是x^2+y^2+z^2的最小值是(17)或用
柯西不等式:(9+4+4)(x²+y²+z²)≥(3x+2y+3z)²,又3x+2y+2z=17,
所以x²+y²+z²)≥17
由3x+2y+2z=17得:y+z=(17-3x)/2
又y^2+z^2=t-x^2可变得:yz=(17-3x)^2/8+(x^2-t)/2
y,z可以看成m^2-[(17-3x)/2]+(17-3x)^2/8+(x^2-t)/2=0的两根
于是由判别式>=0列式得:(17-3x)^2/4-4[(17-3x)^2/8+(x^2-t)/2]>=0
化简得:t>={17(x-3)^2+136}/8
当x=3时,t取得最小值t=136/8=17即是x^2+y^2+z^2的最小值是(17)或用
柯西不等式:(9+4+4)(x²+y²+z²)≥(3x+2y+3z)²,又3x+2y+2z=17,
所以x²+y²+z²)≥17
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询