双曲线的一般式方程
展开全部
双曲线的一般式方程
1、焦点在X轴上时为:
x^2/a^2 - y^2/b^2 = 1
2、焦点在Y 轴上时为:
y^2/a^2 - x^2/b^2 = 1
双曲线的主要特点:
轨迹上一点的取值范围
│x│≥a(焦点在x轴上)或者│y│≥a(焦点在y轴上)。
对称性
关于坐标轴和原点对称。
顶点
A(-a,0), A'(a,0)。同时 AA'叫做双曲线的实轴且│AA'│=2a.
B(0,-b), B'(0,b)。同时 BB'叫做双曲线的虚轴且│BB'│=2b.
F1(-c,0)F2(c,0).F1为双曲线的左焦点,F2为双曲线的右焦点且│F1F2│=2c
对实轴、虚轴、焦点有:a^2+b^2=c^2
在数学中,双曲线(希腊语“ὑπερβολή”字面意思是“超过”或“超出”)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a 的两倍,这里的a 是从双曲线的中心到双曲线最近的分支的顶点的距离。a 还叫做双曲线的半实轴。焦点位于贯穿轴上它们的中间点叫做中心。从代数上说,双曲线是在笛卡尔平面上由如下方程定义的曲线使得,这里的所有系数都是实数,并存在定义在双曲线上的点对(x, y)的多于一个的解。注意在笛卡尔坐标平面上两个互为倒数的变量的图像是双曲线。,双曲线的图像无限接近渐近线,但永不相交。
1、焦点在X轴上时为:
x^2/a^2 - y^2/b^2 = 1
2、焦点在Y 轴上时为:
y^2/a^2 - x^2/b^2 = 1
双曲线的主要特点:
轨迹上一点的取值范围
│x│≥a(焦点在x轴上)或者│y│≥a(焦点在y轴上)。
对称性
关于坐标轴和原点对称。
顶点
A(-a,0), A'(a,0)。同时 AA'叫做双曲线的实轴且│AA'│=2a.
B(0,-b), B'(0,b)。同时 BB'叫做双曲线的虚轴且│BB'│=2b.
F1(-c,0)F2(c,0).F1为双曲线的左焦点,F2为双曲线的右焦点且│F1F2│=2c
对实轴、虚轴、焦点有:a^2+b^2=c^2
在数学中,双曲线(希腊语“ὑπερβολή”字面意思是“超过”或“超出”)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a 的两倍,这里的a 是从双曲线的中心到双曲线最近的分支的顶点的距离。a 还叫做双曲线的半实轴。焦点位于贯穿轴上它们的中间点叫做中心。从代数上说,双曲线是在笛卡尔平面上由如下方程定义的曲线使得,这里的所有系数都是实数,并存在定义在双曲线上的点对(x, y)的多于一个的解。注意在笛卡尔坐标平面上两个互为倒数的变量的图像是双曲线。,双曲线的图像无限接近渐近线,但永不相交。
瑞地测控
2024-08-12 广告
2024-08-12 广告
在苏州瑞地测控技术有限公司,我们深知频率同步与相位同步的重要性。频率同步确保两个或多个设备的时钟频率变化一致,但相位(即时间点)可保持相对固定差值。而相位同步,即时间同步,要求不仅频率一致,相位也必须完全一致,即时间差恒定为零。相位同步的精...
点击进入详情页
本回答由瑞地测控提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询