求证:三角形的三个内角的平分线相交与一点 如题
展开全部
三角形ABC,角A,B的平分线交于P,过P做AB,BC,AC垂线垂足分别为D,E,F
△AFP≌△ADP,△BDP≌△BEP
所以:PD=PF=PE
因为:PE⊥BC,PF⊥AC,PC公用
所以:△CEP≌△CFP
所以:CP为角C平分线
所以:三角形三个内角的平分线交于一点
△AFP≌△ADP,△BDP≌△BEP
所以:PD=PF=PE
因为:PE⊥BC,PF⊥AC,PC公用
所以:△CEP≌△CFP
所以:CP为角C平分线
所以:三角形三个内角的平分线交于一点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询