X服从泊松分布求E[X(X-1)]
1个回答
展开全部
设X服从泊松分布,参数为λ,那么
EX=λ,DX=λ,
所以 E[X(X-1)]
=E(X^2)-EX
=DX+(EX)^2-EX
=λ+λ^2-λ
=λ^2.
也可以直接根据定义
E[X(X-1)]
=sum(n(n-1)*λ^n/n!*e^(-λ)),n=0..∞
=sum(λ^2*λ^(n-2)/(n-2)!*e^(-λ)),n=2..∞
=λ^2*sum(λ^n/n!*e^(-λ)),n=0..∞
=λ^2*1
=λ^2
EX=λ,DX=λ,
所以 E[X(X-1)]
=E(X^2)-EX
=DX+(EX)^2-EX
=λ+λ^2-λ
=λ^2.
也可以直接根据定义
E[X(X-1)]
=sum(n(n-1)*λ^n/n!*e^(-λ)),n=0..∞
=sum(λ^2*λ^(n-2)/(n-2)!*e^(-λ)),n=2..∞
=λ^2*sum(λ^n/n!*e^(-λ)),n=0..∞
=λ^2*1
=λ^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询