小学奥数等差数列公式

 我来答
娱乐草莓浆果派
2023-01-31 · TA获得超过795个赞
知道大有可为答主
回答量:4745
采纳率:100%
帮助的人:71.2万
展开全部

小学奥数等差数列公式如下:

等差数列的和=(首项+末项)×项数÷2;

公差=第二项-首项;

项数=(末项-首项)÷公差+1;

等差数列的第n项=首项+(n-1)×公差;

首项=末项-公差×(项数-1)。

精讲1:计算(1+3+5+7+······+1997+1999)-(2+4+6+······+1996+1998)

分析:通过观察我们不难发现:前后两个括号里的数都是等差数列求和,因此可以先分别求出两个等差数列的和,再把两个和相减,通过观察比较容易发现:第一个括号里的等差数列公差为2,项数为1000项;第二个括号里的等差数列公差也为2,项数为999项。

解:(1+3+5+7+······+1997+1999)-(2+4+6+······+1996+1998)

=(1+1999)×1000÷2-(2+1998)×999÷2

=1000

精讲2:计算3+7+11+······+99

分析:题中所有加数是一个公差为4的等差数列,首项是3,末项是99,要求这个等差数列的和还必须知道项数:项数=(末项-首项)÷公差+1.求出了项数,我们就可以根据求和公式求出和。

解:项数为:(99-3)÷4+1=25

原式=(3+99)×25÷2=1275



推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式