求椭圆离心率与焦距的关系公式。
1个回答
展开全部
椭圆中一些常见二级结论如下:
1、椭圆离心率的定义为椭圆上焦距与长轴的比值,(范围:0<X<1),e=c/a(0<e<1),因为2a>2c。离心率越大,椭圆越扁平;离心率越小,椭圆越接近于圆形。
2、椭圆的焦准距:椭圆的焦点与其相应准线(如焦点(c,0)与准线x=±a^2/c) 的距离为a^2/c-c=b^2/c。
3、焦点在x轴上:|PF1|=a+ex |PF2|=a-ex(F1,F2分别为左右焦点)。
4、椭圆过右焦点的半径r=a-ex。
5、过左焦点的半径r=a+ex。
椭圆的焦点三角形性质为:
(1)|PF1|+|PF2|=2a。
(2)4c²=|PF1|²+|PF2|²-2|PF1|·|PF2|·cosθ。
(3)周长=2a+2c。
(4)面积=S=b²·tan(θ/2)(∠F1PF2=θ)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询