抛物线四种方程各对应的参数方程是什么?
2022-12-13 · 百度认证:北京惠企网络技术有限公司官方账号
y²=2px的参数方程为:x=2pt²,y=2pt。
y²=-2px的参数方程为:x=-2pt²,y=2pt。
x²=2py的参数方程为:y=2pt²,x=2pt。
x²=-2py的参数方程为:y=-2pt²,x=2pt。
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:x=f(t),y=g(t),并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上。
那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。
扩展资料:
数学其他常用参数方程:
(1)圆的参数方程x=a+rcosθy=b+rsinθ(θ∈[0,2π))(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标
(2)椭圆的参数方程x=acosθy=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数 [2]
(3)双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数
(4)直线的参数方程x=x'+tcosay=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数
参考资料: