设数列{an}满足an+1 =an2-nan+1(n=1,2,3,……) 20
设数列{an}满足an+1=an2-nan+1(n=1,2,3,……)当a1≥3时,证明对所有的n≥1,有(1)an≥n+2(2)1/(1+a1)+1/(1+a2)+……...
设数列{an}满足an+1 =an2-nan+1(n=1,2,3,……)
当a1≥3时,证明对所有的n≥1,有
(1)an≥n+2
(2)1/(1+a1)+1/(1+a2)+……+1/(1+an)≤1/2 展开
当a1≥3时,证明对所有的n≥1,有
(1)an≥n+2
(2)1/(1+a1)+1/(1+a2)+……+1/(1+an)≤1/2 展开
1个回答
2010-05-14
展开全部
第一问:①验证n=1 从略
②归纳假设Ak≥n+2
③An+1=An^2-nAn+1≥(n+2)^2-nAn+1
移项整理:An+1≥(n+2)^2/n+1=n^2+4n+4/n+1={(n+1)^2+2(n+1) +1}/n+1=n+3+1/n+1>n+3
证明完毕
②归纳假设Ak≥n+2
③An+1=An^2-nAn+1≥(n+2)^2-nAn+1
移项整理:An+1≥(n+2)^2/n+1=n^2+4n+4/n+1={(n+1)^2+2(n+1) +1}/n+1=n+3+1/n+1>n+3
证明完毕
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询