1的无穷大次方为什么等于e

1的无穷大次方等于e为什么?按照高数的说法1加1除以无穷大的无穷大次方等于e加了一个1除以无穷大就不等于1了啊肯定比1大啊????大神们求解... 1的无穷大次方等于e为什么?按照高数的说法1加 1除以无穷大 的无穷大次方 等于e 加了一个1除以无穷大就不等于1了啊 肯定比1大啊 ????大神们 求解 展开
 我来答
阿菜1111
2019-06-15 · TA获得超过466个赞
知道答主
回答量:35
采纳率:0%
帮助的人:5042
展开全部

lim(x→∞)1^X=lim(x→∞)(1+1/x)^x=e

自变量趋近无穷值时函数的极限:

定义: 设函数f(x)当|x| 大于某一正数时有定义,如果存在常数a,对于任意给定的正数ε,总存在正数M ,使得当x满足不等式|x|>M时,任取f(x)都满足|f(x)-a|<ε,那么常数a 就叫做函数f(x)当 x→∞ 时的极限,记作lim(x→∞)f(x)=a。

这道题1的无穷大次方为什么等于e就是可以令f(x)=1^x求出来的。

扩展资料:

求函数的极限常用的方法:

利用函数的连续性;利用有理化分子或分母;利用两个重要极限;利用无穷小的性质;利用抓大头准则;利用洛必达法则;利用定积分的定义。

两个重要极限:

lim(x→∞)sinx/x=1

lim(x→0)(1+x)^1/x=e或 lim(x→∞)(1+1/x)^x=e

(其中e=2.7182818...是一个无理数,也就是自然对数的底数)

参考资料来源:百度百科-极限

Jymac
推荐于2018-03-14 · TA获得超过7106个赞
知道大有可为答主
回答量:1769
采纳率:90%
帮助的人:613万
展开全部

首先,1的无穷大次方并不等于e,而是等于1。

之所以会产生这样的歧义主要是因为以下两个式子:


乍一看仿佛是等量代换,得出1的无穷次方等于e,

【但是】——

这样的等量代换在极限的计算过程中是不可行的,

【因为】——

极限的计算与普通的运算不一样,凡是带有极限的式子都是一个整体,并不能拆开来先算一部分然后再算另一部分。这是因为极限式中的每一部分对极限的整体收敛是同步在起作用的,而不是一部分先收敛,另一部分之后再进行。



就拿这道题的例子:

当x趋于正无穷时,虽然1/x在不断减少,但作为指数的x却在不断增大,

指数x增大的这部分弥补并逐渐超越了1/x减少的部分,

所以整个极限式是在不断增大的,并且无限趋近于e

(比如:1.0001已经很接近1了,但1.0001^10000却等于2.718145...远远大于1)



所以下面才是正确的式子:



---------------------------------------------------------------------------


【补充】——

为什么x的增大能超越1/x的减小?

见下图

随着x的增大,1/x减少的速度越来越慢,而x的增长速度却始终不变,

这样一来,两边速度差就会越来越大,最终导致了极限e的诞生~

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wqnjnsd
高粉答主

2015-09-11 · 关注我不会让你失望
知道大有可为答主
回答量:1.6万
采纳率:84%
帮助的人:5999万
展开全部
首先,你的说法不正确。数1的多少次方都是1,不会是e。
你说的是那个重要极限,当x趋向于无穷大时,(1+1/x)^x=e.
这是个极限,x趋向无穷大,是个过程。此时,1+1/x已不是数字1.
至于为何是e,有兴趣的话可以去看相关证明。


已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Russhong
2015-09-18 · TA获得超过5367个赞
知道小有建树答主
回答量:618
采纳率:80%
帮助的人:126万
展开全部
这种说法是错误的。

在数学方面,无穷大并非特指一个概念,而是与下述的主题相关:极限、阿列夫数、集合论中的类、超实数、射影几何、扩展的实数轴以及绝对无限等。
在数学方面,1的任何次方都等于1。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
我不是他舅
2013-11-16 · TA获得超过138万个赞
知道顶级答主
回答量:29.6万
采纳率:79%
帮助的人:35亿
展开全部
没有这种说法的
1的∞次方是不定型
只有lim(x→∞)(1+1/x)^x=e
画一个就不一定了
比如lim(x→∞)(1+2/x)^x=e²
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式