初二数学,关于三角形外角的
展开全部
∠BCP=90°-1/2∠A.
证明:∵BP、CP为△ABC两外角∠ABC、∠ACB的平分线,∠A为x°
∴∠BCP=1/2(∠A+∠ABC)、∠PBC=1/2(∠A+∠ACB),
由三角形内角和定理得,∠BPC=180°-∠BCP-∠PBC,
=180°-1/2[∠A+(∠A+∠ABC+∠ACB)],
=180°-1/2(∠A+180°),
=90°-1/2∠A;
望采纳,谢谢
证明:∵BP、CP为△ABC两外角∠ABC、∠ACB的平分线,∠A为x°
∴∠BCP=1/2(∠A+∠ABC)、∠PBC=1/2(∠A+∠ACB),
由三角形内角和定理得,∠BPC=180°-∠BCP-∠PBC,
=180°-1/2[∠A+(∠A+∠ABC+∠ACB)],
=180°-1/2(∠A+180°),
=90°-1/2∠A;
望采纳,谢谢
更多追问追答
追问
不是相等吗
追答
不是相等,看过程,望采纳,谢谢
展开全部
⊿ABC的内角为∠A、∠B、∠C连结AP,∠BPA=∠DBP-∠BAP=∠PBC-∠BAP (BP角平分线:∠DBP=∠PBC)∠APC=∠PCE-∠CAP=∠BCP-∠PAC (CP角平分线:∠PCE=∠BCP)∠BPC=∠BPA+∠APC=∠PBC-∠BAP+∠BCP-∠PAC=(∠PBC+∠BCP )-(∠BAP+∠PAC)=(180°-∠BPC)-∠A所以∠BPC=90°-0.5*∠A
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询