初二几何证明题

1:在三角形ABC中,AB=AC,AD是BC上的中线,AB的垂直平分线交AD于点O,角B的平分线交AD于点I,求证(1)OA=OB=OC(2)I到BC、CA、CB的距离相... 1:在三角形ABC中,AB=AC,AD是BC上的中线,AB的垂直平分线交AD于点O,角B的平分线交AD于点I,求证(1)OA=OB=OC (2)I到BC、CA、CB的距离相等
2:已知三角形ABC中,AD是BC上的高,AB=BC,角BAC=120度,DE垂直AB,DF垂直AC,垂足分别是E、F。求证DE+DF=2分之1BC
展开
zyq_zessd
2010-05-19 · TA获得超过4204个赞
知道小有建树答主
回答量:398
采纳率:0%
帮助的人:403万
展开全部
你好,很高兴回答你的提问~!
1、规定AB垂直平分线与AB的交点为E
(1)∵OE垂直平分AB
∴△AOB为等腰三角形(三线合一逆定理)
则AO=BO
在△ABC中
∵AB=AC且D为BC中点
∴AD是BC的垂直平分线(三线合一)
则同理可证BO=CO
∴AO=BO=CO
(2)过点I分别作AB、AC的垂线,垂足分别为点F、G,连结IC
∵BI为∠ABC的角平分线
且IF⊥AB、ID垂直BC
∴IF=ID(角平分线上的点到角两边的距离相等)
∵AB=AC
∴IC为∠ACB的角平分线(等腰三角形两底角的角平分线交于一点)
则同理可证IG=ID
∴IF=ID=IG,即I到AB、BC、CA的距离相等

2、在△ABC中
∵AB=AC,∠BAC=120°
∴∠B=∠C=(180°-120°)÷2=30°
在△BED中
∵DE⊥AB
∴∠BED=90°
则Sin∠ABC=Sin30°=DE:BD=1:2,即DE=BD/2(如果你们没学三角函数,可以直接写DE=BD/2,因为初中有条定理“直角三角形中,三十度所对的直角边等于斜边的一半”)
同理可证DF=DC/2
则BC/2=(BD+DC)/2=BD/2+DC/2=DE+DF

参考资料: 希望对你有所帮助~!

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式