【紧急】已知函数fx=4sinxsin^2(π/4+x/2)+cos2x-1 10
1个回答
展开全部
(1)解析:∵f(x)=4sinx[sin(π/4+x/2)]^2+cos2x-1
∴f(wx)=4sinwx[sin(π/4+wx/2)]^2+cos2wx-1
=2sinwx(1+sinwx)+cos2wx-1
=2sinwx+2(sinwx)^2+cos2wx-1=2sinwx+1-cos2wx+cos2wx-1
=2sinwx
∵f(wx)在区间[-π/2,2π/3]上为增函数
Wx=-π/2==>x=-π/(2w)
令-π/(2w)<=-π/2==>w<=1
Wx=π/2==>x=π/(2w)
令π/(2w)>=2π/3==>w<=3/4
取其交w<=3/4
∵w>0
∴w的取值范围为0<w<=3/4
(2)解析:∵集合A={x|π/6<=x<=2π/3},B={x|[1/2f(x)]^2-mf(x)+m^2+m-1>0}
(sinx)^2-2msinx+m^2+m-1>0
因为x∈[π/6,2π/3],
设sinx=t,则t∈[1/2,1]
上式化为t^2-2mt+m^2+m-1>0
∵A⊆B恒成立,即[π/6,2π/3]是集合B的子集
∴上式在t∈[1/2,1]上恒成立.
令g(t)=t^2-2mt+m^2+m-1,
其图像为开口向上抛物线,对称轴t=m
则m<1/2,g(1/2)>0;
g(1/2)=m^2-3/4>0==>m<-√3/2或m>√3/2(舍)
∴m<-√3/2
或1/2<=m<=1,⊿<0;
⊿=4-4m<0==>m>1
∴无解
或m>1,g(1)>0;
g(1)=m^2-m>0==>m<0或m>1
∴m>1
综上:实数m的取值范围m<-√3/2或m>1.
∴f(wx)=4sinwx[sin(π/4+wx/2)]^2+cos2wx-1
=2sinwx(1+sinwx)+cos2wx-1
=2sinwx+2(sinwx)^2+cos2wx-1=2sinwx+1-cos2wx+cos2wx-1
=2sinwx
∵f(wx)在区间[-π/2,2π/3]上为增函数
Wx=-π/2==>x=-π/(2w)
令-π/(2w)<=-π/2==>w<=1
Wx=π/2==>x=π/(2w)
令π/(2w)>=2π/3==>w<=3/4
取其交w<=3/4
∵w>0
∴w的取值范围为0<w<=3/4
(2)解析:∵集合A={x|π/6<=x<=2π/3},B={x|[1/2f(x)]^2-mf(x)+m^2+m-1>0}
(sinx)^2-2msinx+m^2+m-1>0
因为x∈[π/6,2π/3],
设sinx=t,则t∈[1/2,1]
上式化为t^2-2mt+m^2+m-1>0
∵A⊆B恒成立,即[π/6,2π/3]是集合B的子集
∴上式在t∈[1/2,1]上恒成立.
令g(t)=t^2-2mt+m^2+m-1,
其图像为开口向上抛物线,对称轴t=m
则m<1/2,g(1/2)>0;
g(1/2)=m^2-3/4>0==>m<-√3/2或m>√3/2(舍)
∴m<-√3/2
或1/2<=m<=1,⊿<0;
⊿=4-4m<0==>m>1
∴无解
或m>1,g(1)>0;
g(1)=m^2-m>0==>m<0或m>1
∴m>1
综上:实数m的取值范围m<-√3/2或m>1.
追问
令-π/(2w)wx=π/(2w)
令π/(2w)>=2π/3==>w<=3/4
为什么这么处理??
追答
[-π/(2w),π/(2w)]是正弦函数y=sinwx的单调增区间,
∵f(wx)在区间[-π/2,2π/3]上为增函数
∴-π/(2w)=2π/3成立
所以,解此不等式即可求出w范围
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询