设F1,F2分别为双曲线的左右焦点,双曲线上存在一点P使得(|PF1|+|PF2|)^2=b^2-3ab,该双曲线离心率为?
设F1,F2分别为双曲线的左右焦点,双曲线上存在一点P使得(|PF1|+|PF2|)^2=b^2-3ab,则该双曲线的离心率为...
设F1,F2分别为双曲线的左右焦点,双曲线上存在一点P使得(|PF1|+|PF2|)^2=b^2-3ab,则该双曲线的离心率为
展开
1个回答
展开全部
因为左右焦点分别为(-2,0),(2,0),PF1⊥PF2
所以P在以F1F2为直径的圆形上,该圆的方程为x²+y²=4
将x²+y²=4带入x²–y²/3=1得x²=7/4,y²=9/4 【点P为(x,y),其实根本不用求出y²=9/4】
所以|PF1|·|PF2|=√[(x+2)²+y²]√[(x-2)²+y²]
=√[(x²+y²+4)²-(4x)²]
=√(8²-28)
=6
la82203008,所在团队:百度知道教育5
为你解答,祝你学习进步!
如果你认可我的回答,
请及时采纳,(点击我的答案上面的【满意答案】图标)
手机用户,请在客户端右上角评价点“满意”即可
你的采纳,
是我前进的动力! 你的采纳也会给你带去财富值的。
如有不明白,
可以追问,直到完成弄懂此题!
如还有新的问题,
请另外向我求助,(但不要在这里追问)答题不易,敬请谅解……
所以P在以F1F2为直径的圆形上,该圆的方程为x²+y²=4
将x²+y²=4带入x²–y²/3=1得x²=7/4,y²=9/4 【点P为(x,y),其实根本不用求出y²=9/4】
所以|PF1|·|PF2|=√[(x+2)²+y²]√[(x-2)²+y²]
=√[(x²+y²+4)²-(4x)²]
=√(8²-28)
=6
la82203008,所在团队:百度知道教育5
为你解答,祝你学习进步!
如果你认可我的回答,
请及时采纳,(点击我的答案上面的【满意答案】图标)
手机用户,请在客户端右上角评价点“满意”即可
你的采纳,
是我前进的动力! 你的采纳也会给你带去财富值的。
如有不明白,
可以追问,直到完成弄懂此题!
如还有新的问题,
请另外向我求助,(但不要在这里追问)答题不易,敬请谅解……
追问
???
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询