已知函数f(x)=ax+1x+2,a∈Z,是否存在整数a,使函数f(x)在x∈[-1,+∞)上递减,并且f(x)不恒为负

已知函数f(x)=ax+1x+2,a∈Z,是否存在整数a,使函数f(x)在x∈[-1,+∞)上递减,并且f(x)不恒为负?若存在,找出一个满足条件的a,若不存在,请说明理... 已知函数f(x)=ax+1x+2,a∈Z,是否存在整数a,使函数f(x)在x∈[-1,+∞)上递减,并且f(x)不恒为负?若存在,找出一个满足条件的a,若不存在,请说明理由. 展开
 我来答
顺眼还素朴灬菠萝蜜7541
2014-10-03 · TA获得超过156个赞
知道答主
回答量:134
采纳率:33%
帮助的人:66万
展开全部
∵f(x)=
ax+1
x+2
=
a(x+2)+1?2a
x+2
=a+
1?2a
x+2

∴要使函数f(x)在x∈[-1,+∞)上递减,
则1-2a>0,此时a
1
2

要使f(x)不恒为负,
即f(x)=
ax+1
x+2
≥0在∈[-1,+∞)有解,
当a=0时,f(x)=
ax+1
x+2
=
1
x+2
,此时f(0)=
1
2
>0

满足f(x)不恒为负,
∴当a=0时,满足条件.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式