如图,在平面直角坐标系中,点A(0,6),点B是x轴上的一个动点,连接AB,取AB的中点M,将线段MB绕着点B

如图,在平面直角坐标系中,点A(0,6),点B是x轴上的一个动点,连接AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90°,得到线段BC,过点B作x轴的垂线交直... 如图,在平面直角坐标系中,点A(0,6),点B是x轴上的一个动点,连接AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90°,得到线段BC,过点B作x轴的垂线交直线AC于点D,设点B坐标是(t,0)。 (1)当t=4时,求直线AB的解析式;(2)当t>0时,用含t的代数式表示点C的坐标及△ABC的面积;(3)是否存在点B,使△ABD为等腰三角形?若存在,请求出所有符合条件的点B的坐标;若不存在,请说明理由。 展开
 我来答
草莓果酱354
2014-08-08 · TA获得超过107个赞
知道答主
回答量:114
采纳率:0%
帮助的人:116万
展开全部
解:(1)当t=4时,B(4,0)
设直线AB的解析式为y= kx+b
把 A(0,6),B(4,0) 代入得:
解得:
∴直线AB的解析式为y=- x+6.
(2)过点C作CE⊥x轴于点E
由∠AOB=∠CEB=90°,∠ABO=∠BCE,
得△AOB∽△BEC


∴点C的坐标为(t+3,
S 梯形AOEC =
S △AOB =
S △BEC =
∴S △ABC = S 梯形AOEC - S △AOB -S △BEC

(3)存在,理由如下:
①当t≥0时
i)若AD=BD
又∵BD∥y轴
∴∠OAB=∠ABD,∠BAD=∠ABD,
∴∠OAB=∠BAD
又∵∠AOB=∠ABC,
∴△ABO∽△ACB


∴t=3,即B(3,0)。
ii)若AB=AD
延长AB与CE交于点G
又∵BD∥CG
∴AG=AC
过点A作AH⊥CG于H

由△AOB∽△GEB


又∵HE=AO=6,


解得:
因为 t≥0


iii)由已知条件可知,当0≤t<12时,∠ADB为钝角,
故BD≠AB
当t≥12时,BD≤CE<BC<AB
∴当t≥0时,不存在BD=AB的情况。
②当-3≤t<0时,∠DAB是钝角
设AD=AB,
过点C分别作CE⊥x轴,CF⊥y轴于点E,点F
可求得点C的坐标为

由BD∥y轴,AB=AD得,
∠BAO=∠ABD,∠FAC=∠BDA,∠ABD=∠ADB
∴∠BAO=∠FAC,
又∵∠AOB=∠AFC=90°,
∴△AOB∽△AFC,



解得
因为-3≤t<0
所以

③当t<-3时,∠ABD是钝角
设AB=BD,过点C分别作CE⊥x轴,CF⊥y轴于点E,点F,
可求得点C的坐标为

∵AB=BD,
∴∠D=∠BAD
又∵BD∥y轴,
∴∠D=∠CAF,
∴∠BAC=∠CAF
又∵∠ABC=∠AFC=90°,AC=AC,
∴△ABC≌△AFC,
∴AF=AB,CF=BC

解得:t=-8,即B(-8,0)
综上所述,存在点B使△ABD为等腰三角形,此时点B坐标为:

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式