已知数列{an}满足an+1=-an2+2an(n∈N*),且0<a1<1.(1)用数学归纳法证明:0<an<1;(2)若bn=lg

已知数列{an}满足an+1=-an2+2an(n∈N*),且0<a1<1.(1)用数学归纳法证明:0<an<1;(2)若bn=lg(1-an),且a1=910,求无穷数... 已知数列{an}满足an+1=-an2+2an(n∈N*),且0<a1<1.(1)用数学归纳法证明:0<an<1;(2)若bn=lg(1-an),且a1=910,求无穷数列{1bn}所有项的和. 展开
 我来答
孤傲cya
2014-12-24 · 超过57用户采纳过TA的回答
知道答主
回答量:121
采纳率:0%
帮助的人:130万
展开全部
(1)证明:①当n=1时,由条件知,成立
②假设n=k成立,即0<ak<1成立,
当n=k+1时,ak+1=-ak2+2ak=-(ak-1)2+1,
∵0<aK<1
∴0<(ak-1)2<1
∴0<-(ak-1)2+1<1
∴0<aK+1<1
这就是说,当=k+1时,0<ak<1也成立.
根据①②知,对任意n∈N*,不等式0<an<1恒成立.

(2)解:1-an+1=(1-an2,0<an<1;
lg(1-an+1)=lg(1-an2,,即lg(1-an+1)=2lg(1-an
即:bn+1=2bn
∴{bn}是以-1为首项,以2为公比的等比数列.
∴bn=-2n-1,∴
1
bn
= ?
1
2n?1

无究数列{
1
bn
}所有项的和为:
1
b1
+
1
b2
+…+
1
bn
+…
=
lim
n→∞
1
b1
+
1
b2
+…+
1
bn
)=
lim
n→∞
[(-1)×
1?
1
2
n
1?
1
2
]=-2×
lim
n→∞
1?(
1
2
) n
)=-2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式