已知函数f(x)=(x2+ax+a)e-x,(a为常数,e为自然对数的底).(Ⅰ)当a=0时,求f′(2);(Ⅱ)若f

已知函数f(x)=(x2+ax+a)e-x,(a为常数,e为自然对数的底).(Ⅰ)当a=0时,求f′(2);(Ⅱ)若f(x)在x=0时取得极小值,试确定a的取值范围;(Ⅲ... 已知函数f(x)=(x2+ax+a)e-x,(a为常数,e为自然对数的底).(Ⅰ)当a=0时,求f′(2);(Ⅱ)若f(x)在x=0时取得极小值,试确定a的取值范围;(Ⅲ)在(Ⅱ)的条件下,设由f(x)的极大值构成的函数为g(a),将a换元为x,试判断曲线y=g(x)是否能与直线3x-2y+m=0(m为确定的常数)相切,并说明理由. 展开
 我来答
明星2450
推荐于2016-07-18 · 超过63用户采纳过TA的回答
知道答主
回答量:159
采纳率:0%
帮助的人:121万
展开全部
(Ⅰ)当a=0时,f(x)=x2e-x,f'(x)=2xe-x-x2e-x=xe-x(2-x).
所以f'(2)=0.
(Ⅱ)f'(x)=(2x+a)e-x-e-x(x2+ax+a)=e-x[-x2+(2-a)x]=-e-x?x[x-(2-a)].
令f'(x)=0,得x=0或x=2-a.
若2-a=0,即a=2时,f'(x)=-x2e-x≤0恒成立,
此时f(x)在区间(-∞,+∞)上单调递减,没有极小值;
当2-a>0,即a<2时,
若x<0,则f'(x)<0.
若0<x<2-a,则f'(x)>0.
所以x=0是函数f(x)的极小值点.
当2-a<0,即a>2时,
若x>0,则f'(x)<0.
若2-a<x<0,则f'(x)>0.
此时x=0是函数f(x)的极大值点.
综上所述,使函数f(x)在x=0时取得极小值的a的取值范围是a<2.
(Ⅲ)由(Ⅱ)知当a<2,且x>2-a时,f'(x)<0,
因此x=2-a是f(x)的极大值点,极大值为f(2-a)=(4-a)ea-2
所以g(x)=(4-x)ex-2(x<2).
g'(x)=-ex-2+ex-2(4-x)=(3-x)ex-2
令h(x)=(3-x)ex-2(x<2).
则h'(x)=(2-x)ex-2>0恒成立,即h(x)在区间(-∞,2)上是增函数.
所以当x<2时,h(x)<h(2)=(3-2)e2-2=1,即恒有g'(x)<1.
又直线3x-2y+m=0的斜率为
3
2

所以曲线y=g(x)不能与直线3x-2y+m=0相切.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式